Skip to main content

Advertisement

Log in

Boundary element methods for variational inequalities

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we present a priori error estimates for the Galerkin solution of variational inequalities which are formulated in fractional Sobolev trace spaces, i.e. in \(\widetilde{H}^{1/2}(\Gamma )\). In addition to error estimates in the energy norm we also provide, by applying the Aubin–Nitsche trick for variational inequalities, error estimates in lower order Sobolev spaces including \(L_2(\Gamma )\). The resulting discrete variational inequality is solved by using a semi-smooth Newton method, which is equivalent to an active set strategy. A numerical example is given which confirms the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brenner, S., Scott, R.L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  2. Brezis, H.: Problémes unilateraux. J. Math. Pures Appl. 51, 1–168 (1972)

    MATH  MathSciNet  Google Scholar 

  3. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. Numer. Math. 28, 431–443 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carstensen, C., Gwinner, J.: FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34, 1845–1864 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2001)

    Article  MathSciNet  Google Scholar 

  6. Clement, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. R–2, 77–84 (1975)

    MathSciNet  Google Scholar 

  7. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eck, C., Jarušek, J., Krbec, M.: Unilateral contact problems. Variational methods and existence theorems. Pure Appl. Math. 270. Chapman & Hall/CRC, Boca Raton (2005)

  9. Eck, C., Steinbach, O., Wendland, W.L.: A symmetric boundary element method for contact problems with friction. Math. Comput. Simul. 50, 43–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Glowinski, R.: Numerical methods for nonlinear variational problems. Springer, Berlin (1980)

    Google Scholar 

  12. Gwinner, J., Stephan, E.P.: A boundary element procedure for contact problems in plane linear elastostatics. RAIRO Model. Math. Anal. Numer. 27, 457–480 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Han, H.: A direct boundary element method for Signorini problems. Math. Comp. 55, 115–128 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  15. Hintermüller, M., Ulbrich, M.: A mesh-independence result for semi-smooth Newton methods. Math. Program. Ser. B 101, 151–184 (2004)

    Article  MATH  Google Scholar 

  16. Hsiao, G.C., Wendland, W.L.: The Aubin–Nitsche lemma for integral equations. J. Integral Equ. 3, 299–315 (1981)

    MATH  MathSciNet  Google Scholar 

  17. Hüeber, S., Wohlmuth, B.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43, 156–173 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Isac, G.: Complementarity Problems. Lecture Notes in Mathematics, vol. 1528. Springer, Berlin (1992)

    Google Scholar 

  19. Ito, K., Kunisch, K.: Semi-smooth Newton methods for the Signorini problem. Appl. Math. 53, 455–468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  21. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maischak, M., Stephan, E.P.: Adaptive hp-versions of BEM for Signorini problems. Appl. Numer. Math. 54, 425–449 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. McLean, W., Steinbach, O.: Boundary element preconditioners for a hypersingular integral equation on an interval. Adv. Comput. Math. 11, 271–286 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Natterer, F.: Optimale \(L_2\)-Konvergenz finiter Elemente bei Variationsungleichungen. Bonn. Math. Schrift. 89, 1–12 (1976)

    MathSciNet  Google Scholar 

  25. Of, G., Phan, T.X., Steinbach, O.: Boundary element methods for Dirichlet boundary control problems. Math. Methods Appl. Sci. 33, 2187–2205 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Spann, W.: On the boundary element method for the Signorini problem of the Laplacian. Numer. Math. 65, 337–356 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008)

    Book  MATH  Google Scholar 

  29. Stephan, E.P., Wendland, W.L.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Suttmeier, F.-T.: Numerical solution of variational inequalities by adaptive finite elements. Vieweg + Teubner, Wiesbaden (2008)

    Google Scholar 

Download references

Acknowledgments

The author wants to thank the referee whose critical remarks and helpful hints and advises resulted in an essential improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Steinbach.

Additional information

In memoriam Christof Eck (1968–2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbach, O. Boundary element methods for variational inequalities. Numer. Math. 126, 173–197 (2014). https://doi.org/10.1007/s00211-013-0554-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0554-4

Mathematics Subject Classification

Navigation