Skip to main content
Log in

Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Error estimates with explicit constants are given for approximations of functions, definite integrals and indefinite integrals by means of the Sinc approximation. Although in the literature various error estimates have already been given for these approximations, those estimates were basically for examining the rates of convergence, and several constants were left unevaluated. Giving more explicit estimates, i.e., evaluating these constants, is of great practical importance, since by this means we can reinforce the useful formulas with the concept of “verified numerical computations.” In this paper we reveal the explicit form of all constants in a computable form under the same assumptions of the existing theorems: the function to be approximated is analytic in a suitable region. We also improve some formulas themselves to decrease their computational costs. Numerical examples that confirm the theory are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beighton, S., Noble, B.: An error estimate for Stenger’s quadrature formula. Math. Comput. 38, 539–545 (1982)

    MathSciNet  MATH  Google Scholar 

  2. Bialecki, B.: Sinc-collocation methods for two-point boundary value problems. IMA J. Numer. Anal. 11, 357–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlson, T.S., Dockery, J., Lund, J.: A sinc-collocation method for initial value problems. Math. Comput. 66, 215–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corliss, G.F., Rall, L.B.: Adaptive, self-validating numerical quadrature. SIAM J. Sci. Stat. Comput. 8, 831–847 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eiermann, M.C.: Automatic, guaranteed integration of analytic functions. BIT 29, 270–282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haber, S.: Two formulas for numerical indefinite integration. Math. Comput. 60, 279–296 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kearfott, R.B.: A Sinc approximation for the indefinite integral. Math. Comput. 41, 559–572 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Muhammad, M., Mori, M.: Double exponential formulas for numerical indefinite integration. J. Comput. Appl. Math. 161, 431–448 (2003)

    Google Scholar 

  10. Muhammad, M., Nurmuhammad, A., Mori, M., Sugihara, M.: Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation. J. Comput. Appl. Math. 177, 269–286 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nurmuhammad, A., Muhammad, M., Mori, M.: Numerical solution of initial value problems based on the double exponential transformation. Publ. Res. Inst. Math. Sci. 41, 937–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Okayama, T., Matsuo, T., Sugihara, M.: Improvement of a Sinc-collocation method for Fredholm integral equations of the second kind. BIT Numer. Math. 51, 339–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Petras, K.: Principles of verified numerical integration. J. Comput. Appl. Math. 199, 317–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rashidinia, J., Zarebnia, M.: Numerical solution of linear integral equations by using Sinc-collocation method. Appl. Math. Comput. 168, 806–822 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rashidinia, J., Zarebnia, M.: Convergence of approximate solution of system of Fredholm integral equations. J. Math. Anal. Appl. 333, 1216–1227 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rashidinia, J., Zarebnia, M.: Solution of a Volterra integral equation by the sinc-collocation method. J. Comput. Appl. Math. 206, 801–813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stenger, F.: A “Sinc-Galerkin” method of solution of boundary value problems. Math. Comput. 33, 85–109 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  19. Stenger, F.: Summary of Sinc numerical methods. J. Comput. Appl. Math. 121, 379–420 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sugihara, M.: Optimality of the double exponential formula-functional analysis approach. Numer. Math. 75, 379–395 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sugihara, M.: Double exponential transformation in the sinc-collocation method for two-point boundary value problems. J. Comput. Appl. Math. 149, 239–250 (2002)

    Google Scholar 

  22. Sugihara, M.: Near optimality of the sinc approximation. Math. Comput. 72, 767–786 (2002)

    Article  MathSciNet  Google Scholar 

  23. Sugihara, M., Matsuo, T.: Recent developments of the Sinc numerical methods. J. Comput. Appl. Math. 164–165, 673–689 (2004)

    Article  MathSciNet  Google Scholar 

  24. Tanaka, K., Sugihara, M., Murota, K.: Numerical indefinite integration by double exponential sinc method. Math. Comput. 74, 655–679 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Tanaka, K., Sugihara, M., Murota, K.: Function classes for successful DE-Sinc approximations. Math. Comput. 78, 1553–1571 (2009)

    Google Scholar 

  26. Tanaka, K., Sugihara, M., Murota, K., Mori, M.: Function classes for double exponential integration formulas. Numer. Math. 111, 631–655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamanaka, N., Okayama, T., Oishi, S., Ogita, T.: A fast verified automatic integration algorithm using double exponential formula. In: Nonlinear Theory and Its Applications, vol. 1, pp. 119–132, IEICE (2010)

Download references

Acknowledgments

The authors are greatly indebted to Dr. Ken’ichiro Tanaka of Future University Hakodate for several helpful comments concerning Lemma 4.22. This work was supported by Global COE Program “The research and training center for new development in mathematics,” MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Okayama.

Appendix A: On the differences between the function spaces

Appendix A: On the differences between the function spaces

Here we explain how Definition 2.1 (\(\mathbf{L}_{K,\alpha ,\beta }({\fancyscript{D}})\)) differs from the definition in Stenger [18, Definition 4.1.1] (\(\tilde{\mathbf{L}}_{\alpha ,\beta }({\fancyscript{D}})\)), which is described below.

Definition 6.1

Let \({\fancyscript{D}}\) be a simply connected domain which satisfies \((a,\,b)\subset {\fancyscript{D}}\), and let \(\alpha ,\,\beta \) be positive constants. Let \(\phi \) be a conformal map of \({\fancyscript{D}}\) onto \({\fancyscript{D}}_{ d}\), for a constant \({ d}>0\). Then \(\tilde{\mathbf{L}}_{\alpha ,\beta }({\fancyscript{D}})\) denotes the family of all functions \(f\) that are analytic on \({\fancyscript{D}}\) and satisfy for all \(z\) in \({\fancyscript{D}}\) the condition that

$$\begin{aligned} |f(z)|\le C\frac{1}{(1+|\,\mathrm{e}^{-\phi (z)}|)^{\alpha }(1+|\,\mathrm{e}^{\phi (z)}|)^{\beta }}. \end{aligned}$$
(6.1)

1.1 Appendix A.1: The difference in the SE-Sinc case

If \(\phi (z)\) is the SE transformation \(\psi _{\text{ SE }}^{-1}(z)\), the condition (2.7) is equivalent to

$$\begin{aligned} |f(z)| \le K \frac{(b-a)^{\alpha +\beta }}{|1 + \mathrm{e}^{-\phi (z)}|^{\alpha }|1 + \mathrm{e}^{\phi (z)}|^{\beta }}. \end{aligned}$$
(6.2)

The substantive difference between (6.1) and (6.2) is the place of the absolute value sign \(|\,\cdot \,|\). And, as written in Stenger [18, Example 4.2.8], the conditions (6.1) and (6.2) are essentially equivalent if we do not care about the concrete forms of the constants \(C\) and \(K\). Theorems 2.3, 2.5 and 2.8 hold even if we replace \(\tilde{\mathbf{L}}_{\alpha ,\beta }({\fancyscript{D}})\) with \(\mathbf{L}_{K,\alpha ,\beta }({\fancyscript{D}})\), and vice versa.

However, the goal of this paper is to reveal all the constants in the error estimates. From this point of view clearly (6.1) and (6.2) are not exactly the same conditions. Therefore we have to determine which function spaces to employ in order to give the desired estimates. In this paper, Definition 2.1 is employed for the two reasons described below.

1.2 Appendix A.2: The difference in the DE-Sinc case

If \(\phi (z)\) is the DE transformation \(\psi _{\text{ DE }}^{-1}(z)\), we can rewrite the condition (6.1) as

$$\begin{aligned} |f(\psi _{\text{ DE }}(\zeta ))| \le C \frac{1}{(1 + |\,\mathrm{e}^{-\zeta }|)^{\alpha }(1 + |\,\mathrm{e}^{\zeta }|)^{\beta }}, \end{aligned}$$
(6.3)

substituting the DE transformation \(z=\psi _{\text{ DE }}(\zeta )\). On the other hand, the condition (2.7) is equivalent to

$$\begin{aligned} |f(\psi _{\text{ DE }}(\zeta ))| \le K \frac{(b-a)^{\alpha +\beta }}{|1 + \mathrm{e}^{-\uppi \sinh (\zeta )}|^{\alpha }|1 + \mathrm{e}^{\uppi \sinh (\zeta )}|^{\beta }}. \end{aligned}$$
(6.4)

Compare (6.3) with (6.4). The decay rate (as \(|\mathrm Re \zeta |\rightarrow \infty \)) of (6.3) is single-exponential, whereas the rate of (6.4) is double-exponential. This means that the function space \(\tilde{\mathbf{L}}_{\alpha ,\beta }({\fancyscript{D}})\) does not include the DE case. Actually, It is well known that the condition (6.1) is not suited for the DE transformation, and for this reason some authors [12, 25, 26] have already adopted the condition (2.7).

Furthermore, as described above, the condition (2.7) is also meaningful in the SE-Sinc case, and thus can be used throughout the present paper. This is convenient from a theoretical viewpoint.

1.3 Appendix A.3: Practicality of Definition 2.1

The second reason is that Definition 2.1 is more natural from a practical viewpoint, since the condition (2.7) is directly related to popular conditions such as Lipschitz/Hölder continuity. In fact, Stenger [18, Example 4.2.8] has explained a way to construct a function \(G\) in \(\mathbf{L}_{K,\alpha ,\alpha }({\fancyscript{D}})\) from a function \(F\) analytic in \({\fancyscript{D}}\) and \(\alpha \)-order Hölder continuous on \(\overline{{\fancyscript{D}}}\). This means the constant \(K\) in (2.7) is more easily found in practice, and the constant \(C\) in (6.1) should be estimated from the condition (2.7) (or (6.2)). This is why we believe that the condition (2.7) is more natural than (6.1) from a practical viewpoint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okayama, T., Matsuo, T. & Sugihara, M. Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration. Numer. Math. 124, 361–394 (2013). https://doi.org/10.1007/s00211-013-0515-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0515-y

Mathematics Subject Classification (1991)

Navigation