Skip to main content
Log in

An error estimate for the finite difference approximation to degenerate convection–diffusion equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider semi-discrete first-order finite difference schemes for a nonlinear degenerate convection–diffusion equations in one space dimension, and prove an L 1 error estimate. Precisely, we show that the \({L^1_{\rm{loc}}}\) difference between the approximate solution and the unique entropy solution converges at a rate \({\mathcal{O}(\Delta x^{1/11})}\) , where \({\Delta x}\) is the spatial mesh size. If the diffusion is linear, we get the convergence rate \({\mathcal{O}(\Delta x^{1/2})}\) , the point being that the \({\mathcal{O}}\) is independent of the size of the diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afif M., Amaziane B.: Convergence of finite volume schemes for a degenerate convection–diffusion equation arising in flow in porous media. Comput. Methods Appl. Mech. Eng. 191(46), 5265–5286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouchut F., Guarguaglini F.R., Natalini R.: Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49(2), 723–749 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bustos, M.C., Concha, F., Bürger, R., Tory, E.M.: Sedimentation and thickening. Phenomenological foundation and mathematical theory. In: Mathematical Modelling: Theory and Applications, vol. 8. Kluwer Academic Publishers, Dordrecht (1999)

  4. Carrillo J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147(4), 269–361 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen G.-Q., Karlsen K.H.: L 1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Am. Math. Soc. 358(3), 937–963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn B., Gripenberg G.: Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differ. Equ. 151(2), 231–251 (1999) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn B., Shu C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall M.G., Majda A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34(149), 1–21 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Espedal, M.S., Karlsen, K.H.: Numerical solution of reservoir flow models based on large time step operator splitting algorithms. In: Filtration in porous media and industrial application (Cetraro, 1998), Lecture Notes in Math., vol 1734. Springer, Berlin, pp. 9–77 (2000)

  10. Evje, S., Karlsen, K.H.: Monotone difference approximation of BV solutions to degenerate convection–diffusion equations, vol., pp. 9–77 of Report. University of Bergen, Department of Applied Mathematics, Bergen (1998)

  11. Evje S., Karlsen K.H.: Viscous splitting approximation of mixed hyperbolic-parabolic convection–diffusion equations. Numer. Math. 83(1), 107–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evje S., Karlsen K.H.: Monotone difference approximations of BV solutions to degenerate convection–diffusion equations. SIAM J. Numer. Anal. 37(6), 1838–1860 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evje S., Karlsen K.H.: An error estimate for viscous approximate solutions of degenerate parabolic equations. J. Nonlinear Math. Phys. 9(3), 262–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eymard, R., Gallouët, T., Herbin, R.: Convergence of a finite volume scheme for a nonlinear hyperbolic equation. In: Proceedings of the Third International Colloquium on Numerical Analysis (Plovdiv, 1994). Utrecht, VSP, pp. 61–70 (1995)

  15. Eymard R., Gallouët T., Herbin R.: Error estimate for approximate solutions of a nonlinear convection–diffusion problem. Adv. Differ. Equ. 7(4), 419–440 (2002)

    MATH  Google Scholar 

  16. Eymard R., Gallouët T., Herbin R., Michel A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numerische Mathematik. 92, 41–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harten A., Lax P.D., van Leer B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holden, H., Karlsen, K.H., Lie, K.-A.: Operator splitting methods for degenerate convection–diffusion equations. I. Convergence and entropy estimates. In: Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), CMS Conf. Proc., vol. 29. Amer. Math. Soc., Providence, RI, pp. 293–316 (2000)

  19. Holden, H., Karlsen, K.H., Risebro, N.H.: On uniqueness and existence of entropy solutions of weakly coupled systems of nonlinear degenerate parabolic equations. Electron. J. Differ. Equ. (46):31 (2003) (electronic)

  20. Karlsen K.H., Risebro N.H.: On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn. Syst. 9(5), 1081–1104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karlsen K.H., Risebro N.H.: Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. M2AN Math. Model. Numer. Anal. 35(2), 239–269 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karlsen K.H., Risebro N.H., Towers J.D.: Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22(4), 623–664 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kröner D., Rokyta M.: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31(2), 324–343 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kružkov S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  25. Kurganov A., Tadmor E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuznetsov, N.N.: The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz., 16(6), 1489–1502, (1627) (1976)

  27. Ohlberger M.: A posteriori error estimates for vertex centered finite volume approximations of convection–diffusion-reaction equations. M2AN Math. Model. Numer. Anal. 35(2), 355–387 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oleĭnik O.A.: Convergence of certain difference schemes. Soviet Math. Dokl. 2, 313–316 (1961)

    MathSciNet  Google Scholar 

  29. Osher S., Tadmor E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50(181), 19–51 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vol′pert A.I.: Generalized solutions of degenerate second-order quasilinear parabolic and elliptic equations. Adv. Differ. Equ. 5(10–12), 1493–1518 (2000)

    MathSciNet  Google Scholar 

  31. Vol′pert A.I., Hudjaev S.I.: The Cauchy problem for second order quasilinear degenerate parabolic equations. Mat. Sb. (N.S.) 78(120), 374–396 (1969)

    MathSciNet  Google Scholar 

  32. Westdickenberg M., Noelle S.: A new convergence proof for finite volume schemes using the kinetic formulation of conservation laws. SIAM J. Numer. Anal. 37(3), 742–757 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Risebro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsen, K.H., Koley, U. & Risebro, N.H. An error estimate for the finite difference approximation to degenerate convection–diffusion equations. Numer. Math. 121, 367–395 (2012). https://doi.org/10.1007/s00211-011-0433-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0433-9

Keywords

Mathematics Subject Classification (2000)

Navigation