Skip to main content
Log in

Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this work, we consider nonlinear eigenvalue problems that depend on an additional parameter and our interest is to track several eigenvalues as this parameter varies. Based on the concept of invariant pairs, a theoretically sound and reliable numerical continuation procedure is developed. Particular attention is paid to the situation when the procedure approaches a singularity, that is, when eigenvalues included in the invariant pair collide with other eigenvalues. For the real generic case, it is proven that such a singularity only occurs when two eigenvalues collide on the real axis. It is shown how this situation can be handled numerically by an appropriate expansion of the invariant pair. The viability of our continuation procedure is illustrated by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E.L., Georg, K.: Numerical continuation methods. In: Springer Series in Computational Mathematics, vol. 13. An Introduction. Springer, Berlin (1990)

  2. Arnol’d V.I.: Matrices depending on parameters. Uspehi Mat. Nauk 26(2(158)), 101–114 (1971)

    MathSciNet  Google Scholar 

  3. Arnol’d V.I.: Lectures on bifurcations and versal families. Uspehi Mat. Nauk 27(5(167)), 119–184 (1972) A series of articles on the theory of singularities of smooth mappings

    MathSciNet  MATH  Google Scholar 

  4. Betcke T., Kressner D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betcke T., Trefethen L.N.: Reviving the method of particular solutions. SIAM Rev. 47(3), 469–491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. arXiv:1003.1580 (2010)

  7. Beyn, W.-J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Y.A., Sandstede, B.: Numerical continuation, and computation of normal forms. In: Handbook of Dynamical Systems, vol. 2, pp. 149–219. North-Holland, Amsterdam (2002)

  8. Beyn, W.-J., Kleß, W., Thümmler, V.: Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension. In: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 47–72. Springer, Berlin (2001)

  9. Beyn W.-J., Thümmler V.: Continuation of invariant subspaces for parameterized quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl. 31(3), 1361–1381 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bindel D. S., Demmel J.W., Friedman M.: Continuation of invariant subspaces in large bifurcation problems. SIAM J. Sci. Comput. 30(2), 637–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Botchev M.A., Sleijpen G.L.G., Sopaheluwakan A.: An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems. Linear Algebra Appl. 431(3–4), 427–440 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deuflhard, P.: Newton methods for nonlinear problems—affine invariance and adaptive algorithms. In: Springer Series in Computational Mathematics, vol. 35. Springer, Berlin (2006). Corr. 2nd printing edition

  13. Dieci L., Friedman M.J.: Continuation of invariant subspaces. Numer. Linear Algebra Appl. 8(5), 317–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gohberg I., Kaashoek M.A., van Schagen F.: On the local theory of regular analytic matrix functions. Linear Algebra Appl. 182, 9–25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gohberg I., Lancaster P., Rodman L.: Matrix Polynomials. Academic Press, New York (1982)

    MATH  Google Scholar 

  16. Gohberg I., Rodman L.: Analytic matrix functions with prescribed local data. J. Anal. Math. 40, 90–128 (1982)

    Article  MathSciNet  Google Scholar 

  17. Govaerts W.: Numerical Methods for Bifurcations of Dynamical Equilibria. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  18. Higham N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  19. Jarlebring, E.: The spectrum of delay-differential equations: numerical methods, stability and perturbation . PhD thesis, Inst. Comp. Math, TU Braunschweig (2008)

  20. Kailath, T.: Linear Systems. In: Prentice-Hall Information and System Sciences Series. Prentice-Hall Inc., Englewood Cliffs (1980)

  21. Kamiya N., Wu S.T.: Generalized eigenvalue formulation of the Helmholtz equation by the Trefftz method. Eng. Comput. 11, 177–186 (1994)

    Article  Google Scholar 

  22. Keldyš M.V.: On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations. Doklady Akad. Nauk SSSR (N.S.) 77, 11–14 (1951)

    MathSciNet  Google Scholar 

  23. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of Bifurcation Theory (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976), pp. 359–384. Publ. Math. Res. Center, No. 38. Academic Press, New York (1977)

  24. Košir T.: Kronecker bases for linear matrix equations, with application to two-parameter eigenvalue problems. Linear Algebra Appl. 249, 259–288 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kressner D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lui S.H., Keller H.B., Kwok T.W.C.: Homotopy method for the large, sparse, real nonsymmetric eigenvalue problem. SIAM J. Matrix Anal. Appl. 18(2), 312–333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mathias R.: A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17(3), 610–620 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitteilungen 27 (2004)

  29. Mennicken, R., Möller, M.: Non-Self-Adjoint Boundary Eigenvalue Problems. In: North-Holland Mathematics Studies, vol. 192. North-Holland, Amsterdam (2003)

  30. Michiels, W., Niculescu, S.I.: Stability and Stabilization of Time-Delay Systems. In: Advances in Design and Control, vol. 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)

  31. Moreno E., Erni D., Hafner C.: Band structure computations of metallic photonic crystals with the multiple multipole method. Phys. Rev. B 65(15), 155120 (2002)

    Article  Google Scholar 

  32. Steinbach O., Unger G.: A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator. Numer. Math. 113(2), 281–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wilkening J.: An algorithm for computing Jordan chains and inverting analytic matrix functions. Linear Algebra Appl. 427(1), 6–25 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, J.: Theory and Applications of Partial Functional Differential Equations. In: Applied Mathematical Sciences, vol. 119. Springer, New York (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kressner.

Additional information

W.-J. Beyn and D. Kressner were supported by CRC 701 ‘Spectral Analysis and Topological Methods in Mathematics’. C. Effenberger was supported by the SNF research module Robust numerical methods for solving nonlinear eigenvalue problems within the SNF ProDoc Efficient Numerical Methods for Partial Differential Equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyn, WJ., Effenberger, C. & Kressner, D. Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems. Numer. Math. 119, 489–516 (2011). https://doi.org/10.1007/s00211-011-0392-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0392-1

Mathematics Subject Classification (2000)

Navigation