Skip to main content
Log in

Analysis of a finite volume element method for the Stokes problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: Lectures on Elliptic Boundary Value Problems. AMS, Providence (2010)

    MATH  Google Scholar 

  2. Araya R., Barrenechea G., Valentin F.: Stabilized finite element methods based on multiscale enrichment for the Stokes problem. SIAM J. Numer. Anal. 44, 322–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arminjon P., Madrane A.: A mixed finite volume/finite element method for 2-dimensional compressible Navier–Stokes equations on unstructured grids. In: Fey, M., Jeltsch, R. (eds) Hyperbolic Problems Theory, Numerics, Applications. International Series of Numerical Mathematics, vol 129, pp. 11–20. Birkhäuser, Basel (1998)

    Google Scholar 

  4. Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bejc̆ek M., Feistauer M., Gallouët T., Hájek J., Herbin R.: Combined triangular FV-triangular FE method for nonlinear convection-diffusion problems. ZAMM Z. Angew. Math. Mech. 87, 499–517 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bernardi C., Raugel G.: Méthodes d’éléments finis mixtes pour les équations de Stokes et de Navier–Stokes dans un polygone non convexe. Calcolo 18, 255–291 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bi Ch., Ginting V.: A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem. Numer. Math. 114, 107–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bürger, R., Ruiz-Baier, R., Torres, H.: A finite volume element method for a coupled transport-flow system modeling sedimentation. (2011, submitted)

  9. Cai Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou S.C.: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comput. 66, 85–104 (1997)

    Article  MATH  Google Scholar 

  11. Chou S.C., Kwak D.Y.: Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90, 441–458 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  13. Clément Ph.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)

    Google Scholar 

  14. Cui M., Ye X.: Superconvergence of finite volume methods for the Stokes equations. Numer. Methods PDEs 25, 1212–1230 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Douglas J., Wang J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52, 485–508 (1989)

    MathSciNet  Google Scholar 

  16. El Alaoui L.: An adaptive finite volume box scheme for solving a class of nonlinear parabolic equations. Appl. Math. Lett. 22, 291–296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. El Alaoui L., Ern A.: Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods. ESAIM: Math. Model. Numer. Anal. 38, 903–929 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ern A., Guermond J.-L.: Theory and Practice of Finite Elements. Springer-Verlag, New York (2004)

    MATH  Google Scholar 

  19. Eymard R., Herbin R., Latché J.C.: On a stabilized colocated finite volume scheme for the Stokes problem. ESAIM: Math. Model. Numer. Anal. 40, 501–527 (2006)

    Article  MATH  Google Scholar 

  20. Eymard R., Gallouët T., Herbin R., Latché J.-C.: Convergence of the MAC scheme for the compressible Stokes equations. SIAM J. Numer. Anal. 48, 2218–2246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ewing R.E., Lin T., Lin Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feistauer M., Felcman J., Lukác̆ová-Medvid’ová M.: Combined finite element-finite volume solution of compressible flow. J. Comput. Appl. Math. 63, 179–199 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feistauer M., Felcman J., Lukác̆ová-Medvid’ová M., Warnecke G.: Error estimates for a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36, 1528–1548 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fortin M., Glowinsky R.: Méthodes de lagrangien augmenté. Dunod, Paris (1982)

    Google Scholar 

  25. Franca L., Madureira A., Valentin F.: Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Comput. Methods Appl. Mech. Eng. 194, 2077–2094 (2005)

    Article  MathSciNet  Google Scholar 

  26. Gallouët T., Herbin R., Latché J.C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: the isothermal case. Math. Comput. 78, 1333–1352 (2009)

    Article  MATH  Google Scholar 

  27. Girault V.: A combined finite element and marker and cell method for solving Navier–Stokes equations. Numer. Math. 26, 39–59 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Girault V., Raviart P.A.: Finite Element Methods for Navier–Stokes Equations. Springer-Verlag, Berlin (1986)

    MATH  Google Scholar 

  29. Han H., Wu X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35, 560–571 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Heimsund B.-O., Tai X.-C., Wang J.: Superconvergence for the gradient of finite element approximations by L 2 projections. SIAM J. Numer. Anal. 40, 1263–1280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hilhorst D., Vohralí k M.: A posteriori error estimates for combined finite volume-finite element discretizations of reactive transport equations on nonmatching grids. Comput. Methods Appl. Mech. Eng. 200, 597–613 (2011)

    Article  Google Scholar 

  32. Ikeda, T.: Maximum principle in finite element models for convection–diffusion phenomena. In: Mathematical Studies 76. Lecture Notes in Numerical and Applied Analysis, vol. 4. North-Holland, Amsterdam (1983)

  33. Lamichhane B.P.: Inf-sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity. IMA J. Numer. Anal. 29, 404–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li J., Wang J., Ye X.: Superconvergence by L 2-projections for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 6, 711–723 (2009)

    MathSciNet  Google Scholar 

  35. Li J., Chen Z.: A new stabilized finite volume method for the stationary Stokes equations. Adv. Comput. Math. 30, 141–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li J., Chen Z., Wu W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)

    MATH  Google Scholar 

  37. Matthies G., Skrzypacs P., Tobiska L.: Superconvergence of a 3D finite element method for stationary Stokes and Navier–Stokes problems. Numer. Methods PDEs 21, 701–725 (2005)

    MATH  Google Scholar 

  38. Nicaise S., Djadel K.: Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments. IMA J. Numer. Anal. 25, 523–548 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nicolaides R.: The covolume approach to computing incompressible flows. In: Gunzburger, M., Nicolaides, R. (eds) Incompressible Computational Fluid Dynamics, pp. 295–333. Cambridge University Press, Cambridge (1993)

    Chapter  Google Scholar 

  40. Quarteroni A.: Numerical Models for Diffferential Problems. MS&A Series, vol. 2. Springer- Verlag, Milan (2009)

    Book  Google Scholar 

  41. Quarteroni A., Valli A.: Numerical Approximation of Partial Differential Equations. Springer- Verlag, Berlin (1997)

    Google Scholar 

  42. Wang J., Ye X.: Superconvergence Analysis for the Stokes Problem by Least Squares Surface Fitting. SIAM J. Numer. Anal. 39, 1001–1013 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ye X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Methods PDEs 5, 440–453 (2001)

    Google Scholar 

  44. Ye X.: A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44, 183–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ruiz-Baier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quarteroni, A., Ruiz-Baier, R. Analysis of a finite volume element method for the Stokes problem. Numer. Math. 118, 737–764 (2011). https://doi.org/10.1007/s00211-011-0373-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0373-4

Mathematics Subject Classification (2000)

Navigation