Skip to main content
Log in

Implicit standard Jacobi gives high relative accuracy

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We prove that the Jacobi algorithm applied implicitly on a decomposition A = XDX T of the symmetric matrix A, where D is diagonal, and X is well conditioned, computes all eigenvalues of A to high relative accuracy. The relative error in every eigenvalue is bounded by \({O(\epsilon \kappa (X))}\) , where \({\epsilon}\) is the machine precision and \({\kappa(X)\equiv\|X\|_2\cdot\|X^{-1}\|_2}\) is the spectral condition number of X. The eigenvectors are also computed accurately in the appropriate sense. We believe that this is the first algorithm to compute accurate eigenvalues of symmetric (indefinite) matrices that respects and preserves the symmetry of the problem and uses only orthogonal transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anda A., Park H.: Fast plane rotations with dynamic scaling. . SIAM J. Matrix Anal. Appl. 15, 162–174 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn, Software Environ. Tools 9. SIAM, Philadelphia (1999)

  3. Barlow J., Demmel J.: Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Num. Anal. 27(3), 762–791 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Businger P., Golub G.H.: Linear least squares solutions by householder transformations. Numer. Math. 7, 269–276 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demmel J.: Accurate singular value decompositions of structured matrices. SIAM J. Matrix Anal. Appl. 21(2), 562–580 (1999)

    Article  MathSciNet  Google Scholar 

  6. Demmel J., Gragg W.: On computing accurate singular values and eigenvalues of acyclic matrices. Linear Algebra Appl. 185, 203–218 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demmel J., Gu M., Eisenstat S., Slapničar I., Veselić K., Drmač Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299(1–3), 21–80 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Demmel J., Kahan W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist. Comput. 11(5), 873–912 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Demmel, J., Koev, P.: Necessary and sufficient conditions for accurate and efficient rational function evaluation and factorizations of rational matrices. In: Structured matrices in mathematics, computer science, and engineering, II (Boulder, CO, 1999), Contemp. Math., vol 281, pp. 117–143. Amer. Math. Soc., Providence, RI (2001)

  10. Demmel J., Koev P.: Accurate SVDs of weakly diagonally dominant M-matrices. Numer. Math. 98(1), 99–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demmel J., Koev P.: Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials. Linear Algebra Appl. 417(2–3), 382–396 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Demmel J., Veselić K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13(4), 1204–1246 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Demmel J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  14. Dopico F.M., Koev P.: Accurate symmetric rank revealing and eigendecompositions of symmetric structured matrices. SIAM J. Matrix Anal. Appl. 28(4), 1126–1156 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dopico F.M., Molera J.M.: Perturbation theory for factorizations of LU type through series expansions. SIAM J. Matrix Anal. Appl. 27(2), 561–581 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dopico F.M., Molera J.M., Moro J.: An orthogonal high relative accuracy algorithm for the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 25(2), 301–351 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Drmač Z.: Implementation of Jacobi rotations for accurate singular value computation in floating point arithmetic. SIAM J. Sci. Comput. 18(4), 1200–1222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Drmač Z.: Accurate computation of the product induced singular value decomposition with applications. SIAM J. Num. Anal. 35(5), 1969–1994 (1998)

    Article  MATH  Google Scholar 

  19. Drmač Z.: A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm. IMA J. Num. Anal. 19, 191–213 (1999)

    Article  MATH  Google Scholar 

  20. Drmač Z., Veselić K.: New fast and accurate Jacobi SVD algorithm. I. SIAM J. Matrix Anal. Appl. 29(4), 1322–1342 (2008)

    Article  MATH  Google Scholar 

  21. Drmač Z., Veselić K.: New fast and accurate Jacobi SVD algorithm. II. SIAM J. Matrix Anal. Appl. 29(4), 1343–1362 (2008)

    Article  MATH  Google Scholar 

  22. Eisenstat S., Ipsen I.: Relative perturbation techniques for singular value problems. SIAM J. Numer. Anal. 32(6), 1972–1988 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fernando K., Parlett B.: Accurate singular values and differential qd algorithms. Numer. Math. 67, 191–229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gentleman W.M.: Error analysis of QR decompositions by Givens transformations. Linear Algebra and Appl. 10, 189–197 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  25. Golub G., Van Loan C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  26. Hari V.: Accelerating the SVD block-Jacobi method. Computing 75(1), 27–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hari V.: Convergence of a block-oriented quasi-cyclic Jacobi method. SIAM J. Matrix Anal. Appl. 29(2), 349–369 (2007)

    Article  MathSciNet  Google Scholar 

  28. Higham, N.J.: The Matrix computation toolbox. http://www.ma.man.ac.uk/~higham/mctoolbox

  29. Higham N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  30. Horn, R.A., Johnson, C.R.: Topics in matrix analysis. Cambridge University Press, Cambridge (1994). (Corrected reprint of the 1991 original)

  31. Koev P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27(1), 1–23 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Koev P., Dopico F.: Accurate eigenvalues of certain sign regular matrices. Linear Algebra Appl. 424(2–3), 435–447 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Li R.C.: Relative perturbation theory. II. Eigenspace and singular subspace variations. SIAM J. Matrix Anal. Appl. 20(2), 471–492 (1999)

    Article  MathSciNet  Google Scholar 

  34. Li R.C.: Relative perturbation theory. IV. sin 2θ theorems. Linear Algebra Appl. 311(1–3), 45–60 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mathias R.: Accurate eigensystem computations by Jacobi methods. SIAM J. Mat. Anal. Appl. 16(3), 977–1003 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. The MathWorks, Inc., Natick, MA: MATLAB Reference guide (1992)

  37. Parlett B.N.: The symmetric eigenvalue problem. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  38. Peláez M.J., Moro J.: Accurate factorization and eigenvalue algorithms for symmetric DSTU and TSC matrices. SIAM J. Matrix Anal. Appl. 28(4), 1173–1198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rutishauser H.: The Jacobi method for real symmetric matrices. Numer. Math. 9(1), 1–10 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  40. Slapničar I.: Componentwise analysis of direct factorization of real symmetric and Hermitian matrices. Linear Algebra Appl. 272, 227–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Slapničar I.: Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD. Linear Algebra Appl. 358, 387–424 (2003) Special issue on accurate solution of eigenvalue problems (Hagen, 2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Slapničar, I.: Accurate symmetric eigenreduction by a Jacobi method. Ph.D. thesis, Fernuniversität - Hagen, Hagen, Germany (1992)

  43. Stewart G.W., Sun J.G.: Matrix perturbation theory. Academic Press, New York (1990)

    MATH  Google Scholar 

  44. Veselić K.: A Jacobi eigenreduction algorithm for definite matrix pairs. Num. Math. 64, 241–269 (1993)

    Article  MATH  Google Scholar 

  45. Ye Q.: Computing singular values of diagonally dominant matrices to high relative accuracy. Math. Comp. 77(264), 2195–2230 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Froilán M. Dopico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dopico, F.M., Koev, P. & Molera, J.M. Implicit standard Jacobi gives high relative accuracy. Numer. Math. 113, 519–553 (2009). https://doi.org/10.1007/s00211-009-0240-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0240-8

Mathematics Subject Classification (2000)

Navigation