Skip to main content
Log in

Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We derive in this paper a posteriori error estimates for discretizations of convection–diffusion–reaction equations in two or three space dimensions. Our estimates are valid for any cell-centered finite volume scheme, and, in a larger sense, for any locally conservative method such as the mimetic finite difference, covolume, and other. We consider meshes consisting of simplices or rectangular parallelepipeds and also provide extensions to nonconvex cells and nonmatching interfaces. We allow for the cases of inhomogeneous and anisotropic diffusion–dispersion tensors and of convection dominance. The estimates are established in the energy (semi)norm for a locally postprocessed approximate solution preserving the conservative fluxes and are of residual type. They are fully computable (all occurring constants are evaluated explicitly) and locally efficient (give a local lower bound on the error times an efficiency constant), so that they can serve both as indicators for adaptive refinement and for the actual control of the error. They are semi-robust in the sense that the local efficiency constant only depends on local variations in the coefficients and becomes optimal as the local Péclet number gets sufficiently small. Numerical experiments confirm their accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark I., Barkve T., Bøe Ø., Mannseth T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19(5), 1700–1716 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Achdou Y., Bernardi C., Coquel F.: A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96(1), 17–42 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975)

  4. Afif, M., Bergam, A., Mghazli, Z., Verfürth, R.: A posteriori estimators for the finite volume discretization of an elliptic problem. Numer. Algorithms 34(2–4), 127–136 (2003). International Conference on Numerical Algorithms, vol. II. Marrakesh (2001)

    Google Scholar 

  5. Agouzal A., Baranger J., Maître J.F., Oudin F.: Connection between finite volume and mixed finite element methods for a diffusion problem with nonconstant coefficients. Application to a convection diffusion problem. East-West J. Numer. Math. 3(4), 237–254 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Agouzal A., Oudin F.: A posteriori error estimator for finite volume methods. Appl. Math. Comput. 110(2–3), 239–250 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ainsworth M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Angermann L.: Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems. Computing 55(4), 305–323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Angermann, L., Knabner, P., Thiele, K.: An error estimator for a finite volume discretization of density driven flow in porous media. In: Proceedings of the International Centre for Mathematical Sciences Conference on Grid Adaptation in Computational PDEs: Theory and Applications (Edinburgh, 1996), vol. 26, pp. 179–191 (1998)

  10. Arbogast T., Dawson C.N., Keenan P.T., Wheeler M.F., Yotov I.: Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19(2), 404–425 (1998)

    Article  MathSciNet  Google Scholar 

  11. Bank R.E., Weiser A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44(170), 283–301 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bebendorf M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Bergam A., Mghazli Z., Verfürth R.: Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire. Numer. Math. 95(4), 599–624 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bernardi C., Verfürth R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brezzi F., Fortin M.: Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol 15. Springer, New York (1991)

    Google Scholar 

  16. Brezzi F., Lipnikov K., Shashkov M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Burman E., Ern A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comp. 76(259), 1119–1140 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Carstensen C., Lazarov R., Tomov S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42(6), 2496–2521 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cheddadi, I., Fučík, R., Prieto, M.I., Vohralík, M.: Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems (2008). Preprint R08018, Laboratoire Jacques-Louis Lions, submitted for publication

  20. Chénier, E., Eymard, R., Nicolas, X.: A finite volume scheme for the transport of radionucleides in porous media. Comput. Geosci. 8(2), 163–172 (2004). Simulation of Transport Around a Nuclear Waste Disposal Site: The COUPLEX Test Cases

    Google Scholar 

  21. Chou S.H., Kwak D.Y., Kim K.Y.: A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case. SIAM J. Numer. Anal. 39(4), 1170–1196 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Coudière Y., Vila J.P., Villedieu P.: Convergence rate of a finite volume scheme for a two-dimensional convection–diffusion problem. M2AN Math. Model. Numer. Anal. 33(3), 493–516 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Domelevo K., Omnes P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN Math. Model. Numer. Anal. 39(6), 1203–1249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Droniou J., Eymard R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105(1), 35–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Eigestad G.T., Klausen R.A.: On the convergence of the multi-point flux approximation O-method: numerical experiments for discontinuous permeability. Numer. Methods Partial Differ. Equ. 21(6), 1079–1098 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. El Alaoui L., Ern A., Burman E.: A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection-diffusion equations. IMA J. Numer. Anal. 27(1), 151–171 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ern, A., Stephansen, A.F., Vohralík, M.: Guaranteed and robust a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods (2007). Preprint R07050, Laboratoire Jacques-Louis Lions, submitted for publication

  28. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

  29. Eymard R., Gallouët T., Herbin R.: Finite volume approximation of elliptic problems and convergence of an approximate gradient. Appl. Numer. Math. 37(1–2), 31–53 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Eymard R., Gallouët T., Herbin R.: A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26(2), 326–353 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Eymard R., Gallouët T., Herbin R.: A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344(6), 403–406 (2007)

    MATH  MathSciNet  Google Scholar 

  32. Eymard R., Hilhorst D., Vohralík M.: A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105(1), 73–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Faille I.: A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Engrg. 100(2), 275–290 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Karakashian O.A., Pascal F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kim K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76(257), 43–66 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lazarov, R., Tomov, S.: A posteriori error estimates for finite volume element approximations of convection–diffusion–reaction equations. Comput. Geosci. 6(3–4), 483–503 (2002). Locally conservative numerical methods for flow in porous media

    Google Scholar 

  37. Nicaise S.: A posteriori error estimations of some cell-centered finite volume methods. SIAM J. Numer. Anal. 43(4), 1481–1503 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nicaise S.: A posteriori error estimations of some cell centered finite volume methods for diffusion–convection–reaction problems. SIAM J. Numer. Anal. 44(3), 949–978 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ohlberger M.: A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection–diffusion equations. Numer. Math. 87(4), 737–761 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ohlberger M.: A posteriori error estimates for vertex centered finite volume approximations of convection–diffusion–reaction equations. M2AN Math. Model. Numer. Anal. 35(2), 355–387 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Payne L.E., Weinberger H.F.: An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rivière B., Wheeler M.F., Banas K.: Part II. Discontinuous Galerkin method applied to single phase flow in porous media. Comput. Geosci. 4(4), 337–349 (2000)

    Article  MATH  Google Scholar 

  43. Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, vol. II, pp. 523–639. North-Holland, Amsterdam (1991)

  44. Shewchuk, J.R.: Triangle: engineering a 2d quality mesh generator and Delaunay triangulator. In: Applied Computational Geometry: Towards Geometric Engineering, pp. 203–222. Lecture Notes in Computer Science, vol. 1148. Springer, Berlin (1996)

  45. Beirão da Veiga L.: A residual based error estimator for the mimetic finite difference method. Numer. Math. 108(3), 387–406 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. Verfürth R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner-Wiley, Stuttgart (1996)

    MATH  Google Scholar 

  47. Verfürth R.: A posteriori error estimators for convection–diffusion equations. Numer. Math. 80(4), 641–663 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  48. Verfürth R.: Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Vohralík M.: On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H 1. Numer. Funct. Anal. Optim. 26(7–8), 925–952 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Vohralík M.: Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. M2AN Math. Model. Numer. Anal. 40(2), 367–391 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Vohralík M.: A posteriori error estimates for finite volume and mixed finite element discretizations of convection–diffusion–reaction equations. ESAIM Proc. 18, 57–69 (2007)

    Article  MATH  Google Scholar 

  52. Vohralík M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients (2008). Preprint R08009, Laboratoire Jacques-Louis Lions, submitted for publication

  54. Vohralík, M.: Two types of guaranteed (and robust) a posteriori estimates for finite volume methods. In: Finite Volumes for Complex Applications V, pp. 649–656. ISTE and Wiley, London and Hoboken (2008)

  55. Vohralík, M.: Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods (2008). Preprint R08036, Laboratoire Jacques-Louis Lions, submitted for publication

  56. Younès A., Ackerer P., Chavent G.: From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Internat. J. Numer. Methods Engrg. 59(3), 365–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vohralík.

Additional information

This work was supported by the GdR MoMaS project “Numerical Simulations and Mathematical Modeling of Underground Nuclear Waste Disposal”, PACEN/CNRS, ANDRA, BRGM, CEA, EdF, IRSN, France.

The main part of this work was carried out during the author’s post-doc stay at Laboratoire de Mathématiques, Analyse Numérique et EDP, Université de Paris-Sud and CNRS, Orsay, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vohralík, M. Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math. 111, 121–158 (2008). https://doi.org/10.1007/s00211-008-0168-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0168-4

Mathematics Subject Classification (2000)

Navigation