Skip to main content
Log in

Pseudo-polyharmonic vectorial approximation for div-curl and elastic semi-norms

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Vector field reconstruction is a problem arising in many scientific applications. In this paper, we study a div-curl approximation of vector fields by pseudo-polyharmonic splines. This leads to the variational smoothing and interpolating spline problems with minimization of an energy involving the curl and the divergence of the vector field. The relationship between the div-curl energy and elastic energy is established. Some examples are given to illustrate the effectiveness of our approach for a vector field reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amodei L. and Benbourhim M.N. (1991). A vector spline approximation. J. Approx. Theory 67: 51–79

    Article  MathSciNet  MATH  Google Scholar 

  2. Amodei L. and Benbourhim M.N. (1991). A vector spline approximation with application to meteorology. In: Laurent, P.J., Le Méhauté, A. and Schumaker, L.L. (eds) Curves and Surfaces, pp 5–10. Academic Press, New York

    Google Scholar 

  3. Arcangéli R. (2004). Maria Cruz Lopez de Silanes and Juan Jose Torrens, Multidimensional Minimizing Splines. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  4. Atteia M. (1992). Hilbertian Kernels and Spline Functions. North-Holland/Elsevier Science, Amsterdam

    MATH  Google Scholar 

  5. Atteia M. and Benbourhim M.N. (1989). Spline elastic manifolds. In: Lyche, T. and Schumaker, L.L. (eds) Mathematical methods in Computer Aided Geometric Design, pp 45–50. Academic Press, Boston

    Google Scholar 

  6. Atteia, M., Benbourhim, M.N., Casanova, P.G.: Quasi-interpolants elastic manifolds. In: Reporte de Investigation IIMAS. UNAM 3 (25) Mexico (1993)

  7. Benbourhim M.N. and Bouhamidi A. (2005). Approximation of vector fields by thin plate splines with tension. J. Approx. Theory 136: 198–229

    Article  MathSciNet  MATH  Google Scholar 

  8. Benbourhim, M.N., Casanova, P.G.: Generalized variationalquasi-interpolants in (H m (Ω))n. Bol. Soc. Mat. Mexicana 3(3), (1997)

  9. Bergman S. and Schiffer M. (1953). Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, London

    Book  MATH  Google Scholar 

  10. Bezhaev A.Y. and Vasilenko V.A. (2001). Variational Theory of Splines. Kluwer/Plenum, Dordrecht/New York

    MATH  Google Scholar 

  11. Bouhamidi A. and Le Méhauté A. (1999). Multivariate interpolating (m,ℓ,s)-splines. Adv. Comput. Math. 11: 287–314

    Article  MathSciNet  MATH  Google Scholar 

  12. Bouhamidi A. (2005). Weighted thin plate splines. Anal. Appl. 3(3): 297–324

    Article  MathSciNet  MATH  Google Scholar 

  13. Buhmann, M.D.: Radial basis functions: theory and implementation. Cambridge monographs on applied and computational mathematics 12 (2003)

  14. Chen, F., Suter, S.: Elastic spline models for human cardiac motion estimation. IEEE Nonrigid and Articulated Motion Workshop, Puerto Rico, pp. 120–127 (1997)

  15. Chen, F., Suter, S.: Image coordinate transformation based on div-curl vector splines. In: Procedings 14th International Conferences Pattern Recognition (ICPR’98), vol. I, pp. 518–520. Brisbane, Australia, 16–20 (1998)

  16. Ciarlet P. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam

    Book  MATH  Google Scholar 

  17. Daley R. (1985). The analysis of synoptic-scale divergence by statical interpolation scheme, Month. Weather Rev. 113: 1066–1079

    Article  Google Scholar 

  18. Deny J. and Lions J.L. (1954). Les espaces du type de Beppo-Levi. Ann. Inst. Fourier 5: 305–370

    MathSciNet  Google Scholar 

  19. Dodu F. and Rabut C. (2002). Vectorial interpolation using radial-basis-like functions. Comput. Math. Appl. 43: 393–411

    Article  MathSciNet  MATH  Google Scholar 

  20. Duchon J. (1977). Splines minimizing rotation-invariant seminorms in Sobolev spaces. In: Schempp, W. and Zeller, K. (eds) Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, vol. 571, pp 85–100. Springer, Berlin

    Chapter  Google Scholar 

  21. Duchon J. (1976). Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO Anal. Numer. 10(12): 5–12

    MathSciNet  Google Scholar 

  22. Duchon, J.: Fonctions-splines Homogènes à plusieurs variables, Thèse (1980) Université de Grenoble

  23. Duchon, J.: Fonctions-spline à energie invariante par rotation, Rapport de recherche 27, IMAG, Université de Grenoble, (1976)

  24. Golub G.H., Heath M. and Wahba G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21: 215–223

    Article  MathSciNet  MATH  Google Scholar 

  25. Hansen P.C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34: 561–580

    Article  MathSciNet  MATH  Google Scholar 

  26. Iwaniec T. and Sbordone C. (2001). Quasiharmonic fields. Ann. I. H. Poincaré-AN 18(5): 519–572

    Article  MathSciNet  MATH  Google Scholar 

  27. Laurent P.J. (1972). Approximation et Optimisation. Hermann, Paris

    MATH  Google Scholar 

  28. Peetre J. (1966). Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier, Grenoble 16: 279–317

    MathSciNet  MATH  Google Scholar 

  29. Schaback R. (1995). Mutivariate interpolation and approximation by translates of a basis functions. In: Chui, C.K. and Schumaker, L.L. (eds) Approximation Theory VIII: Approximation and Interpolation, vol. 1, pp 491–514. World Scientific, Singapore

    Google Scholar 

  30. Schwartz L. (1966). Théorie des Distibutions. Hermann, Paris

    Google Scholar 

  31. Stein E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton University Press, USA

    MATH  Google Scholar 

  32. Suter, D.: Motion estimation and vector splines. In: Proc. CVPR’94, pp. 939–942. Seattle WA, IEEE (June 1994)

  33. Suter D. and Chen F. (2000). Left ventricular motion reconstruction based on elastic vector splines. IEEE Trans. Med. Imag. 19(4): 295–305

    Article  Google Scholar 

  34. Sorzano C.O.S., Thévenaz P. and Unser M. (2005). Elastic registration of biological images using vector-splines regularization. IEEE Trans. Biomedical Eng. 52(4): 652–663

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahman Bouhamidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benbourhim, MN., Bouhamidi, A. Pseudo-polyharmonic vectorial approximation for div-curl and elastic semi-norms. Numer. Math. 109, 333–364 (2008). https://doi.org/10.1007/s00211-008-0146-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0146-x

Mathematics Subject Classification (2000)

Navigation