Skip to main content
Log in

On the approximability and the selection of particle shape functions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

Particle methods, also known as meshless or meshfree methods, have become popular in approximating solutions of partial differential equations, especially in the engineering community. These methods do not employ a mesh, or use it minimally, in the construction of shape functions. There is a wide variety of classes of shape functions that can be used in particle methods. In this paper, we primarily address the issue of selecting a class of shape functions, among this wide variety, that would yield efficient approximation of the unknown solution. We have also made several comments and observations on the order of convergence of the interpolation error, when these shape functions are used; specifically, we have shown that the interpolation error estimate, for certain classes of shape functions, may not indicate the actual order of convergence of the approximation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armentano, M.G.: Error estimates in Sobolev spaces for moving least square approximation. SIAM J. Numer. Anal. 39(1), 38–51 (2002)

    Article  MATH  Google Scholar 

  2. Armentano, M.G., Duran, R.G.: Error estimates for moving least square approximation. Appl. Numer. Math. 37, 397–416 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atluri, S.N., Shen, S.: The Meshless Local Petrov Galerkin Method. Tech. Sci. Press, 2002

  4. Babuška, I.: Approximation by Hill Functions. Comment Math. Univ. Carolinae. 11, 787–811 (1970)

    Google Scholar 

  5. Babuška, I., Banerjee, U., Osborn, J.: On Principles for the Selection of Shape Functions for the Generalized Finite Element Method. Technical Report #01-16, TICAM, University of Texas at Austin, 2001

  6. Babuška, I., Banerjee, U., Osborn, J.: On Principles for the Selection of Shape Functions for the Generalized Finite Element Method. Comput. Methods Appl. Mech. Engrg. 191, 5595–5629 (2002)

    Article  MathSciNet  Google Scholar 

  7. Babuška, I., Banerjee, U., Osborn, J.: Meshless and Generalized Finite Element Method: A Survey of Some Major Results. In: Meshfree Methods for Partial Differential Equations, M. Griebel and M. A. Schweitzer, (eds.), Lecture Notes in Computational Science and Engineering, Springer, Vol~26, 2002, pp. 1–20

  8. Babuška, I., Banerjee, U., Osborn, J.: Survey of Meshless and Generalized Finite Element Method: A Unified Approach. Acta Numerica 12, 1–125 (2003)

    Article  Google Scholar 

  9. Babuška, I., Caloz, G., Osborn, J.: Special Finite Element Methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: The finite element methods for elliptic problems. North-Holland, 1978

  11. Duarte C.A., Oden J.T.: A review of some meshless methods to solve partial differential equations. Technical Report 95-06, TICAM, University of Texas at Austin, 1995

  12. Gingold, R.A., Monaghan, J.J.: Smoothed Particle Hydrodynamics: Theory and Application to Non Spherical Stars. Mon. Not. R. astr. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  13. Han, W., Meng, X.: Error analysis of the reproducing kernal particle method. Comput. Methods Appl. Mech. Engrg 190, 6157–6181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lancaster, P., Salkauskas, K.: Surfaces Generated by Moving Least Squares Method. Math. Comp 37, 141–158 (1981)

    MathSciNet  MATH  Google Scholar 

  15. Liu, W.K., Chen, Y., Jun, S., Chen, J.S., Belytschko, T., Pan, C., Uras, R.A., Chang, C.T.: Overview and applications of Reproducing Kernal Particle Methods. Archives of Computational Methods in Engineering: State of the art reviews, Vol~3, 1996, pp. 3–80

  16. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing Kernel Particle Methods. Int. J. Numer. Meth. Fluids 20, 1081–1106 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Liu, W.K., Li, S., Belytschko, T.: Moving Least Square Reproducing Kernel Particle Method. Methodology and Convergence. Comput. Methods Appl. Mech. Engrg. 143, 422–453 (1997)

    Google Scholar 

  18. Li, S., Liu, W.K.: Meshfree and Particle Methods and Their Application. Appl. Mechanics Rev. 55, 1–34 (2001)

    Article  Google Scholar 

  19. Melenk, J.M., Babuška, I.: The Partition of Unity Finite Element Method: Theory and Application. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson Et C ie, Paris, 1967

  21. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, 1970

  22. Stenberg, R.: On Some Techniques for approximating Boundary Conditions in the Finite Element Method. Journal of Computational and Applied Mathematics 63, 139–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strang, G.: The Finite Element Method and Approximation Theory. in Numerical Solution of Partial Differential Equations II. SYNSPADE 1970, B. Hubbard eds., Academic Press, London 547–584 (1971)

  24. Strang, G., Fix, G.: A Fourier Analysis of Finite Element Variational Method. In: Constructive Aspects of Functional analysis. Edizioni Cremonese, 1973, pp. 795–840

  25. Stroubolis, T., Copps, K., Babuška, I.: The Generalized Finite Element Method. Comput. Methods Appl. Mech. Engrg. 190, 4081–4193 (2001)

    Article  Google Scholar 

  26. Zhang, X., Liu, X., Lu, M., Chen, Y.: Imposition of essential boundary conditions by displacement constraint equations in meshless methods. Commun. Numer. Meth. Engng. 17, 165–178 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Banerjee.

Additional information

Mathematics Subject Classification (2000): 65N15, 65N30, 41A30

This research was supported by NSF Grant # DMS-98-02367 and ONR Grant # N00014-99-1-0724

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babuška, I., Banerjee, U. & Osborn, J. On the approximability and the selection of particle shape functions. Numer. Math. 96, 601–640 (2004). https://doi.org/10.1007/s00211-003-0489-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0489-2

Keywords

Navigation