Skip to main content
Log in

Backward error analysis for multi-symplectic integration methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

A useful method for understanding discretization error in the numerical solution of ODEs is to compare the system of ODEs with the modified equations obtained through backward error analysis, and using symplectic integration for Hamiltonian ODEs provides more incite into the modified equations. In this paper, the ideas of symplectic integration are extended to Hamiltonian PDEs, and this paves the way for the development of a local modified equation analysis solely as a useful diagnostic tool for the study of these types of discretizations. In particular, local conservation laws of energy and momentum are not preserved exactly when symplectic integrators are used to discretize, but the modified equations are used to derive modified conservation laws that are preserved to higher order along the numerical solution. These results are also applied to the nonlinear wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benettin, G., Giorgilli, A.: On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Statist. Phys. 74, 1117–1143 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Bridges, T.J.: A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. R. Soc. London A 453, 1365–1395 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridges, T.J.: Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society, 121, 147–190 (1997)

    Google Scholar 

  4. Bridges, T.J., Derks, G.: Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry. Proc. R. Soc. London A 455, 2427–2469 (1999)

    Article  MATH  Google Scholar 

  5. Bridges, T.J., Reich, S.: Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A 284, 184–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds.): Computational Molecular Dynamics: Challenges Methods Ideas. In Lecture Notes in Computational Science and Engineering Vol. 4, Springer-Verlag, 1999

  7. Duran, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solutions. The nonlinear Schrødinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)

    MATH  Google Scholar 

  8. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, 1998

  9. Frieseke, G., Pego, R.L.: Solitary waves on FPU lattices: qualitative properties renormalization and continuum limit. Nonlinearity 12, 1601–1628 (1999)

    Article  Google Scholar 

  10. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gonzalez, O., Simo, J.C.: On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry. Computer Methods in Applied Mechanics and Engineering 134, 197–222 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer, E., Lubich, C.: The life-span of backward error analysis for numerical integrators. Numer. Math. 76, 441–462 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiménez, S.: Derivation of the discrete conservation laws for a family of finite difference schemes. Applied Mathematical Computation 64, 13 (1994)

    Article  Google Scholar 

  14. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

    MATH  Google Scholar 

  15. Marsden, J.E., Patrick, G.P., Shkoller, S.: Multi-symplectic geometry variational integrators and nonlinear PDEs. Commun. Math. Phys. 199(2), 351–395 (1998)

    Article  MATH  Google Scholar 

  16. McLachlan, R.I.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66, 465–492 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Moore, B.E.: A modified equations approach for multi-symplectic integration methods. University of Surrey, 2003, ph thesis, submitted

  18. Moore, B.E., Reich, S.: Multi-symplectic integration methods for Hamiltonian PDEs. Future Generation Computer Systems, 19, 395–402 (2003)

    Google Scholar 

  19. Reich, S.: Backward error analysis for numerical integrators. SIAM J Numer Anal 36, 1549–1570 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Reich, S.: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J Comp Phys 157, 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. London: Chapman and Hall, 1994

  22. Strauss, W., Vázquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comp. Phys. 28, 271–278 (1978)

    MATH  Google Scholar 

  23. Vu-Quoc, L., Li, S.: Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation. Comput. Meth. Appl. Mech. Engg. 107, 341–391 (1993)

    Article  MATH  Google Scholar 

  24. Warming, R.F., Hyett, B.J.: The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14, 159–179 (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Reich.

Additional information

Mathematics Subject Classification (1991): 65M06, 65P10, 37K05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, B., Reich, S. Backward error analysis for multi-symplectic integration methods. Numer. Math. 95, 625–652 (2003). https://doi.org/10.1007/s00211-003-0458-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0458-9

Keywords

Navigation