Skip to main content
Log in

Safranal protects against ischemia-induced PC12 cell injury through inhibiting oxidative stress and apoptosis

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Safranal, isolated from saffron (Crocus sativus L.), is known to possesses neuroprotective effects. In this study, the neuroprotective potential of safranal against PC12 cell injury triggered by ischemia/reperfusion was investigated. PC12 cells were pretreated with safranal at concentration ranges of 10–160 μM for 2 h and then deprived from oxygen-glucose-serum for 6 h, followed by reoxygenation for 24 h (OGD condition). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,7-dichlorofluorescin diacetate (DCF-DA), and comet assays were used to measure the extent of cellular viability, reactive oxygen substances (ROS), and DNA damage, respectively. Also, propidium iodide (PI) flow cytometry assay and western blotting of bax, bcl-2, and cleaved caspase-3 were performed for assessment of apoptosis. OGD exposure reduced the cell viability and increased intracellular ROS production, oxidative DNA damage, and apoptosis, in comparison with untreated control cells. Pretreatment with safranal (40 and 160 μM) significantly attenuated OGD-induced PC12 cell death, oxidative damage, and apoptosis. Furthermore, safranal markedly reduced the overexpression of bax/bcl-2 ratio and active caspase-3 following OGD (p < 0.05). The present findings indicated that safranal protects against OGD-induced neurotoxicity via modulating of oxidative and apoptotic responses.

Graphical abstract

The schematic representation of the mode of action of safranal against PC12 cells death induced by oxygen-glucose-serum deprivation and reoxygenation (OGD-R).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad N, Ahmad R, Abbas Naqvi A, Ashafaq M, Alam MA, Ahmad FJ, Al-Ghamdi MS (2017) The effect of safranal loaded mucoadhesive nanoemulsion on oxidative stress markers in cerebral ischemia. Artificial Cells Nanomed Biotechnol 45:775–787

    CAS  Google Scholar 

  • Alamdary SZ, Digaleh H, Khodagholi F (2013) Dual contradictory effect of H-89 on neuronal retraction, death and inflammation in differentiated PC12 cells subjected to oxidative stress. 51:1030–1037

  • Al-Hrout A, Chaiboonchoe A, Khraiwesh B, Murali C, Baig B, El-Awady R, Tarazi H, Alzahmi A, Nelson DR, Greish YE, Ramadan W, Salehi-Ashtiani K, Amin A (2018) Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells. Sci Rep 8:16951

    PubMed  PubMed Central  Google Scholar 

  • Alinejad B, Ghorbani A, Sadeghnia HR (2013) Effects of combinations of curcumin, linalool, rutin, safranal, and thymoquinone on glucose/serum deprivation-induced cell death. Avicenna J Phytomed 3:321–328

    PubMed  PubMed Central  Google Scholar 

  • Babazadeh B, Sadeghnia HR, Kapurchal ES, Parsaee H, Nasri S, Tayarani-Najaran Z (2012) Protective effect of Nigella sativa and thymoquinone on serum/glucose deprivation-induced DNA damage in PC12 cells. Avicenna J Phytomed 2:125–132

    PubMed  PubMed Central  Google Scholar 

  • Bai J, Zheng Y, Wang G, Liu P (2015) Protective effect of D-limonene against oxidative stress-induced cell damage in human lens epithelial cells via the p38 pathway. Oxidative Med Cell Longev 2016:1–12

    Google Scholar 

  • Bharti S, Golechha M, Kumari S, Siddiqui KM, Arya DS (2012) Akt/GSK-3β/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia–reperfusion injury in rats. Eur J Nutr 51:719–727

    CAS  PubMed  Google Scholar 

  • Cassella CR, Jagoda A (2017) Ischemic stroke: advances in diagnosis and management. Emerg Med Clin North Am 35:911–930

    PubMed  Google Scholar 

  • Cheng X, Zhang F, Li J, Wang G (2019) Galuteolin attenuates cerebral ischemia/reperfusion injury in rats via anti-apoptotic, anti-oxidant, and anti-inflammatory mechanisms. Neuropsychiatr Dis Treat 15:2671–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens JA, Panetta JA (1994) Neuroprotection by antioxidants in models of global and focal ischemia. Ann N Y Acad Sci 738:250–256

    CAS  PubMed  Google Scholar 

  • Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    CAS  PubMed  Google Scholar 

  • Cuenca N, Fernandez-Sanchez L, Lax P, Esquiva G, Pinilla I, Martin-Nieto J (2009) Safranal slows retinal degeneration in the retinitis pigmentosa P23H rat model. Invest Ophthalmol Vis Sci 50:979–979

    Google Scholar 

  • Delkhosh-Kasmaie F, Farshid AA, Tamaddonfard E, Imani M (2018) The effects of safranal, a constitute of saffron, and metformin on spatial learning and memory impairments in type-1 diabetic rats: behavioral and hippocampal histopathological and biochemical evaluations. Biomed Pharmacother 107:203–211

    CAS  PubMed  Google Scholar 

  • Dogra A, Kotwal P, Gour A, Bhatt S, Singh G, Mukherjee D, Nandi U (2020) Description of druglike properties of safranal and its chemistry behind low oral exposure. ACS omega 5:9885–9891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elmazoglu Z, Ergin V, Sahin E, Kayhan H, Karasu C (2017) Oleuropein and rutin protect against 6-OHDA-induced neurotoxicity in PC12 cells through modulation of mitochondrial function and unfolded protein response. Interdiscip Toxicol 10:129–141

    CAS  PubMed  Google Scholar 

  • Fu Y, Yang G, Zhu F, Peng C, Li W, Li H, Kim HG, Bode AM, Dong Z, Dong Z (2014) Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation. Cell Death Dis 5:e983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamza AA, El hodairy F, Badawi AM (2016) Safranal ameliorates sodium valproate-induced liver toxicity in rats by targeting gene expression, oxidative stress and apoptosis. J Biomed Pharm Res 4:46–60

    Google Scholar 

  • Hariri AT, Moallem SA, Mahmoudi M, Memar B, Hosseinzadeh H (2010) Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48:2803–2808

    CAS  PubMed  Google Scholar 

  • Harris CA, Johnson EM (2001) BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:37754–37760

    CAS  PubMed  Google Scholar 

  • Hazman Ö, Ovalı S (2015) Investigation of the anti-inflammatory effects of safranal on high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Inflammation 38:1012–1019

    CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Noraei NB (2009) Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res 23:768–774

    CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR (2005) Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci 8:394–399

    CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Sadeghnia H (2007a) Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: involvement of GABAergic and opioids systems. Phytomedicine 14:256–262

    CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR (2007b) Effect of safranal, a constituent of Crocus sativus (saffron), on methyl methanesulfonate (MMS)-induced DNA damage in mouse organs: an alkaline single-cell gel electrophoresis (comet) assay. DNA Cell Biol 26:841–846

    CAS  PubMed  Google Scholar 

  • Hou T, Zhang X, Xu J, Jian C, Huang Z, Ye T, Hu K, Zheng M, Gao F, Wang X (2013) Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. J Biol Chem 288:4602–4612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Cao Q, Sun Z, Chen J, Zheng Q, Xiao F (2018) A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium. 41:195–201

  • Huang L, Zhong X, Qin S, Deng M (2020) Protocatechuic acid attenuates β-secretase activity and okadaic acid-induced autophagy via the Akt/GSK-3β/MEF2D pathway in PC12 cells. 21:1328–1335

  • Jiang W, Chen L, Zhang X, Chen J, Li X, Hou W, Xiao N (2014) Red photon treatment inhibits apoptosis via regulation of bcl-2 proteins and ROS levels, alleviating hypoxic–ischemic brain damage. Neuroscience 268:66–74

    CAS  PubMed  Google Scholar 

  • Kanakis CD, Tarantilis PA, Tajmir-Riahi HA, Polissiou MG (2007) Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. J Agric Food Chem 55:970–977

    CAS  PubMed  Google Scholar 

  • Lahiani A, Brand-Yavin A, Yavin E, Lazarovici P (2018) Neuroprotective effects of bioactive compounds and MAPK pathway modulation in “ischemia”—stressed PC12 pheochromocytoma cells. 8:32

  • Lalkovičová M, Danielisová V (2016) Neuroprotection and antioxidants. Neural Regen Res 11:865

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang W, Chen C, Zhang C, Duan J, Yao H, Wei Q, Meng A, Shi J (2018) Inotodiol protects PC12 cells against injury induced by oxygen and glucose deprivation/restoration through inhibiting oxidative stress and apoptosis. J Appl Biomed 16:126–132

    Google Scholar 

  • Liang F, Xie SJE, Medicine T (2017) Puerarin prevents tumor necrosis factor-α-induced apoptosis of PC12 cells via activation of the PI3K/Akt signaling pathway. 14:813–818

  • Liu C, Li S, Tsao R, Li S, Zhang Y (2017) Extraction and isolation of potential anti-stroke compounds from black soybean (Glycine max L. Merrill) guided by in vitro PC12 cell model. J Funct Foods 31:295–303

    CAS  Google Scholar 

  • Liu W, Miao Y, Zhang L, Xu X, Luan QJB (2020) MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. 11:189–200

  • Malaekeh-Nikouei B, Mousavi SH, Shahsavand S, Mehri S, Nassirli H, Moallem SA (2013) Assessment of cytotoxic properties of safranal and nanoliposomal safranal in various cancer cell lines. Phytother Res 27:1868–1873

    CAS  PubMed  Google Scholar 

  • Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, Bitto A, Crea G, Pisani A, Squadrito F (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Med Cell Longev 2016:1–10

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  • Mousavi S, Tayarani-Najaran Z, Asghari M, Sadeghnia H (2010) Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol 30:591–598

    CAS  PubMed  Google Scholar 

  • Ozkececi ZT, Gonul Y, Yuksel Y, Karavelioglu A, Tunay K, Gulsari Y, Cartilli O, Hazman O, Bal A (2016) Investigation of the effect of safranal and crocin pre-treatment on hepatic injury induced by infrarenal aortic occlusion. Biomed Pharmacother 83:160–166

    CAS  PubMed  Google Scholar 

  • Paliwal P, Chauhan G, Gautam D, Dash D, Patne SC, Krishnamurthy S (2018) Indole-3-carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn Schmiedeberg's Arch Pharmacol 391:613–625

    CAS  Google Scholar 

  • Pan P, Qiao L, Wen X (2016) Safranal prevents rotenone-induced oxidative stress and apoptosis in an in vitro model of Parkinson’s disease through regulating Keap1/Nrf2 signaling pathway. Cell Mol Biol 62:11–17

    PubMed  Google Scholar 

  • Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M (2011) Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 219:197–204

    CAS  PubMed  Google Scholar 

  • Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205

    CAS  PubMed  Google Scholar 

  • Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER (2017) Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 15:115–122

    CAS  PubMed  Google Scholar 

  • Rafieipour F, Hadipour E, Emami SA, Asili J, Tayarani-Najaran Z (2019) Safranal protects against beta-amyloid peptide-induced cell toxicity in PC12 cells via MAPK and PI3 K pathways. Metab Brain Dis 34:165–172

    CAS  PubMed  Google Scholar 

  • Rahaman MS, Banik S, Akter M, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki MJE, Safety E (2020) Curcumin alleviates arsenic-induced toxicity in PC12 cells via modulating autophagy/apoptosis. 200:110756

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    CAS  PubMed  Google Scholar 

  • Sadeghnia HR, Kamkar M, Assadpour E, Boroushaki MT, Ghorbani A (2013) Protective effect of safranal, a constituent of Crocus sativus, on quinolinic acid-induced oxidative damage in rat hippocampus. Iran J Basic Med Sci 16:73

    PubMed  PubMed Central  Google Scholar 

  • Sadeghnia HR, Ghorbani Hesari T, Mortazavian SM, Mousavi SH, Tayarani-Najaran Z, Ghorbani A (2014) Viola tricolor induces apoptosis in cancer cells and exhibits antiangiogenic activity on chicken chorioallantoic membrane. Biomed Res Int 2014:1–8

    Google Scholar 

  • Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatogr A 699:107–118

    CAS  PubMed  Google Scholar 

  • Thieme H, Morkisch N, Mehrholz J, Pohl M, Behrens J, Borgetto B, Dohle C (2018) Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev 50:e26–e27

    Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    CAS  PubMed  Google Scholar 

  • Wang C-H, Lee W-J, Ghanta VK, Wang W-T, Cheng S-Y, Hsueh C-M (2009) Molecules involve in the self-protection of neurons against glucose–oxygen–serum deprivation (GOSD)-induced cell damage. Brain Res Bull 79:169–176

    CAS  PubMed  Google Scholar 

  • Wang J, Liu S, Li S, Song F, Zhang Y, Liu Z, C-m L (2014) Ultrafiltration LC-PDA-ESI/MS combined with reverse phase-medium pressure liquid chromatography for screening and isolation potential α-glucosidase inhibitors from Scutellaria baicalensis Georgi. Anal Methods 6:5918–5924

    CAS  Google Scholar 

  • Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg EJC (2020) PC12 cell line: cell types, coating of culture vessels, Differentiation and Other Culture Conditions. 9:958

  • Woronowicz A, Amith SR, Davis VW, Jayanth P, De Vusser K, Laroy W, Contreras R, Meakin SO, Szewczuk MR (2007) Trypanosome trans-sialidase mediates neuroprotection against oxidative stress, serum/glucose deprivation, and hypoxia-induced neurite retraction in Trk-expressing PC12 cells. Glycobiology 17:725–734

    CAS  PubMed  Google Scholar 

  • Wu C, Zhao W, Yu J, Li S, Lin L, Chen X (2018) Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. 8:1–11

  • Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L (2020) Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 13:28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Ma J, Fan L, Zou Y, Dang X, Wang K, Song J (2015) Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue Cell 47:291–300

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Wu C, Guo S, Su J, Zhao W, Xing H (2019) Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury. J Cell Biochem 120:3757–3764

    CAS  PubMed  Google Scholar 

  • Zhi J, Duan B, Pei J, Wu S, Wei J (2019) Daphnetin protects hippocampal neurons from oxygen-glucose deprivation-induced injury. J Cell Biochem 120:4132–4139

    CAS  PubMed  Google Scholar 

  • Zhou H, Yang W-s, Li Y, Ren T, Peng L, Guo H, J-f L, Zhou Y, Zhao Y, Yang L-c (2017) Oleoylethanolamide attenuates apoptosis by inhibiting the TLR4/NF-κB and ERK1/2 signaling pathways in mice with acute ischemic stroke. Naunyn Schmiedeberg's Arch Pharmacol 390:77–84

    Google Scholar 

Download references

Funding

The authors received financial support from Vice Chancellery for Research and Technology, Mashhad University of Medical Sciences (grant numbers: 89502, 900950).

Author information

Authors and Affiliations

Authors

Contributions

Elham Assadpour and Fatemeh Forouzanfar wrote the first draft of the article. Mohammad Taher Boroushaki and Hossein Hosseinzadeh were advisors. Elham Asadpour, Afrouz Adab, Seyedeh Hoda Dastpeiman, and Fatemeh Forouzanfar performed the experiments. Hamid Reza Sadeghnia supervised the whole project and prepared the final draft of the paper. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Hamid R. Sadeghnia.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzanfar, F., Asadpour, E., Hosseinzadeh, H. et al. Safranal protects against ischemia-induced PC12 cell injury through inhibiting oxidative stress and apoptosis. Naunyn-Schmiedeberg's Arch Pharmacol 394, 707–716 (2021). https://doi.org/10.1007/s00210-020-01999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01999-8

Keywords

Navigation