Skip to main content
Log in

Effect of omega-3 fatty acids on glucose homeostasis: role of free fatty acid receptor 1

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Insulin resistance is a worldwide health problem. This study investigated the acute effects of eicosapentanoic acid (EPA) on glucose homeostasis focusing on the role of free fatty acid receptor 1 (FFAR1) and the chronic effects of fish oil omega-3 fatty acids on insulin resistance. Insulin resistance was induced by feeding mice high-fructose, high-fat diet (HFrHFD) for 16 weeks. In the first part, the acute effects of EPA alone and in combination with GW1100 and DC260126 (FFAR1 blockers) on glucose homeostasis and hepatic phosphatidyl-inositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) were investigated in standard chow diet (SCD)- and HFrHFD-fed mice. In the second part, mice were treated with fish oil omega-3 fatty acids for 4 weeks starting at the week 13 of feeding HFrHFD. Changes in the blood- and liver tissue-insulin resistance markers and FFAR1 downstream signals were recorded at the end of experiment. Results showed that EPA increased 0 and 30 min blood glucose levels after glucose load in SCD-fed mice but improved glucose tolerance in HFrHFD-fed mice. Moreover, FFAR1 blockers reduced EPA effects on glucose tolerance and hepatic PIP2 and DAG levels. On the other hand, chronic use of fish oil omega-3 fatty acids increased FBG levels and decreased serum insulin and triglycerides levels without improving the index of insulin resistance. Also, they increased hepatic β-arrestin-2, PIP2, and pS473 Akt levels but decreased DAG levels. In conclusion, EPA acutely improved glucose homeostasis in HFrHFD-fed mice by modulating the activity of FFAR1. However, the chronic use of fish oil omega-3 fatty acids did not improve the insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadian M, Duncan RE, Sul HS (2007) Triacylglycerol metabolism in adipose tissue. Future Lipidol 2:229–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akinkuolie AO, Ngwa JS, Djoussé L (2011) Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clin Nutr 30:702–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albert BB, Derraik JG, Brennan CM, Biggs JB, Smith GC, Garg ML et al (2014) Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci Rep 4:6697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker PW, Gibbons GF (2000) Effect of dietary fish oil on the sensitivity of hepatic lipid metabolism to regulation by insulin. J Lipid Res 41:719–726

    CAS  PubMed  Google Scholar 

  • Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab. 2:5

    Google Scholar 

  • Bauer S, Wennberg Huldt C, Kanebratt K, Durieux I, Gunne D, Andersson S et al (2017) Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep 7:14620

    PubMed  PubMed Central  Google Scholar 

  • Behme MT (1996) Dietary fish oil enhances insulin sensitivity in miniature pigs. J Nutr 126:1549–1553

    CAS  PubMed  Google Scholar 

  • Boden G (2011) Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes 18:139–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borkman M, Chisholm DJ, Furler SM, Storlien LH, Kraegen EW, Simons LA, Chesterman CN (1989) Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes. 38:1314–1319

    CAS  PubMed  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311

    CAS  PubMed  Google Scholar 

  • Burant CF (2013) Activation of GPR40 as a therapeutic target for the treatment of type 2 diabetes. Diabetes Care 36:S175–S179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi K, Kim YB (2010) Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med 25:119–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deisl C, Anderegg M, Albano G, Lüscher BP, Cerny D, Soria R, Bouillet E, Rimoldi S, Scherrer U, Fuster DG (2016) Loss of sodium/hydrogen exchanger NHA2 exacerbates obesity-and aging-induced glucose intolerance in mice. PLoS One 11:e0163568

    PubMed  PubMed Central  Google Scholar 

  • Figueras M, Olivan M, Busquets S, López-Soriano FJ, Argilés JM (2011) Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status. Obesity. 19:362–369

    CAS  PubMed  Google Scholar 

  • Franekova V, Angin Y, Hoebers NT, Coumans WA, Simons PJ, Glatz JF et al (2014) Marine omega-3 fatty acids prevent myocardial insulin resistance and metabolic remodeling as induced experimentally by high insulin exposure. Am J Physiol Cell Physiol 308:C297–C307

    PubMed  Google Scholar 

  • Gao H, Geng T, Huang T, Zhao Q (2017) Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis. Lipids Health Dis 16:131

    PubMed  PubMed Central  Google Scholar 

  • Giacco R, Cuomo V, Vessby B, Uusitupa M, Hermansen K, Meyer BJ, Riccardi G, Rivellese AA, KANWU Study Group (2007) Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids? Nutr Metab Cardiovasc Dis 17:572–580

    CAS  PubMed  Google Scholar 

  • Gross C, Chang CW, Kelly SM, Bhattacharya A, McBride SM, Danielson SW et al (2015) Increased expression of the PI3K enhancer PIKE mediates deficits in synaptic plasticity and behavior in fragile X syndrome. Cell Rep 11:727–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haber EP, Ximenes HM, Procópio J, Carvalho CR, Curi R, Carpinelli AR (2003) Pleiotropic effects of fatty acids on pancreatic β-cells. J Cell Physiol 194:1–12

    CAS  PubMed  Google Scholar 

  • Heldmaier G (1974) Temperature adaptation and brown adipose tissue in hairless and albino mice. J Comp Physiol 92(3):281–292

    Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    CAS  PubMed  Google Scholar 

  • Holness MJ, Smith ND, Greenwood GK, Sugden MC (2004) Acute ω-3 fatty acid enrichment selectively reverses high-saturated fat feeding-induced insulin hypersecretion but does not improve peripheral insulin resistance. Diabetes. 53:S166–S171

    CAS  PubMed  Google Scholar 

  • Home PD, Pacini G (2008) Hepatic dysfunction and insulin insensitivity in type 2 diabetes mellitus: a critical target for insulin-sensitizing agents. Diabetes Obes Metab 10:699–718

    CAS  PubMed  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature. 422:173–176

    CAS  PubMed  Google Scholar 

  • Jornayvaz FR, Shulman GI (2012) Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance. Cell Metab 15:574–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N, Matthan N, Lichtenstein AH, Moustaid-Moussa N (2010) Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr 140:1915–1922

    CAS  PubMed  Google Scholar 

  • Kato M, Nishikawa S, Ikehata A, Dochi K, Tani T, Takahashi T, Imaizumi A, Tsuda T (2017) Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 61:1600471

    Google Scholar 

  • Kim Y, Shin D (2014) Effect of omega-3 polyunsaturated fatty acids on insulin resistance in type 2 diabetes. Bioscientifica. 35

  • Kristinsson H, Bergsten P, Sargsyan E (2015) Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure. Biochim Biophys Acta 1853:3248–3257

    CAS  PubMed  Google Scholar 

  • Lark DS, Fisher-Wellman KH, Neufer PD (2012) High-fat load: mechanism (s) of insulin resistance in skeletal muscle. Int J Obes Suppl 2:S31–S36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, He J, Du Y, Cui J, Ma Y, Zhang X (2014) Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via angiotensin II its receptors-mediated mechanism in rats. BMC Complement Altern Med 14:441

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Cervantes C, Liu F (2017) Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein Cell 8(6):446–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luan B, Zhao J, Wu H, Duan B, Shu G, Wang X, Li D, Jia W, Kang J, Pei G (2009) Deficiency of a β-arrestin-2 signal complex contributes to insulin resistance. Nature. 457:1146–1149

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    CAS  PubMed  Google Scholar 

  • Manosalva C, Mena J, Velasquez Z, Colenso CK, Brauchi S, Burgos RA, Hidalgo MA (2015) Cloning, identification and functional characterization of bovine free fatty acid receptor-1 (FFAR1/GPR40) in neutrophils. PLoS One 10:e0119715

    PubMed  PubMed Central  Google Scholar 

  • Matthews DR, Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 28:412–419

    CAS  PubMed  Google Scholar 

  • Meyers AM, Mourra D, Beeler JA (2017) High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity. PLoS One 12:e0190206

    PubMed  PubMed Central  Google Scholar 

  • Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62

    CAS  PubMed  Google Scholar 

  • Mori Y, Murakawa Y, Katoh S, Hata S, Yokoyama J, Tajima N, Ikeda Y, Nobukata H, Ishikawa T, Shibutani Y (1997) Influence of highly purified eicosapentaenoic acid ethyl ester on insulin resistance in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus. Metabolism. 46:1458–1464

    CAS  PubMed  Google Scholar 

  • Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL et al (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech 4:842–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muurling M, Mensink RP, Pijl H, Romijn JA, Havekes LM, Voshol PJ (2003) A fish oil diet does not reverse insulin resistance despite decreased adipose tissue TNF-α protein concentration in ApoE-3* Leiden mice. J Nutr 133:3350–3355

    CAS  PubMed  Google Scholar 

  • Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H, Nakata M, Yano T, Shimakawa K, Taketomi S, Takeuchi K, Odaka H, Kaisho Y (2009) Overexpression of GPR40 in pancreatic β-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes. 58:1067–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamoto K, Nishinaka T, Sato N, Mankura M, Koyama Y, Kasuya F, Tokuyama S (2013) Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain. PLoS One 8:e81563

    PubMed  PubMed Central  Google Scholar 

  • Oda Y, Tadokoro S, Takase M, Kanahara N, Watanabe H, Shirayama Y, Hashimoto K, Iyo M (2015) G protein-coupled receptor kinase 6/β-arrestin 2 system in a rat model of dopamine supersensitivity psychosis. J Psychopharmacol 29:1308–1313

    CAS  PubMed  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 142:687–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh PC, Koh KK, Sakuma I, Lim S, Lee Y, Lee S, Lee K, Han SH, Shin EK (2014) Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int J Cardiol 176:696–702

    PubMed  Google Scholar 

  • Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, Kauter K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L (2011) High-carbohydrate high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57:51–64

    CAS  PubMed  Google Scholar 

  • Rivellese AA, Maffettone A, Iovine C, Di Marino L, Annuzzi G, Mancini M et al (1996) Long-term effects of fish oil on insulin resistance and plasma lipoproteins in NIDDM patients with hypertriglyceridemia. Diabetes Care 19:1207–1213

    CAS  PubMed  Google Scholar 

  • Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Owman C, Olde B (2005) Free fatty acid receptor 1 (FFA 1 R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 322:207–215

    CAS  PubMed  Google Scholar 

  • Sarbolouki S, Javanbakht MH, Derakhshanian H, Hosseinzadeh P, Zareei M, Hashemi SB, Dorosty AR, Eshraghian MR, Djalali M (2013) Eicosapentaenoic acid improves insulin sensitivity and blood sugar in overweight type 2 diabetes mellitus patients: a double-blind randomised clinical trial. Singap Med J 54:387–390

    Google Scholar 

  • Scorletti E, Byrne CD (2013) Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr 33:231–248

    CAS  PubMed  Google Scholar 

  • Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 53(suppl 3):S16–S21

    CAS  PubMed  Google Scholar 

  • Xu P, Wang H, Kayoumu A, Wang M, Huang W, Liu G (2015) Diet rich in docosahexaenoic acid/eicosapentaenoic acid robustly ameliorates hepatic steatosis and insulin resistance in seipin deficient lipodystrophy mice. Nutr Metab 12:58

    Google Scholar 

  • Yamada H, Yoshida M, Ito K, Dezaki K, Yada T, Ishikawa SE et al (2016) Potentiation of glucose-stimulated insulin secretion by the GPR40–PLC–TRPC pathway in pancreatic β-cells. Sci Rep 6:25912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaney GC, Corkey BE (2003) Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia. 46:1297–1312

    CAS  PubMed  Google Scholar 

  • Zarei M, Fakher S, Djalali M (2016) Effects of vitamin A, C and E, or omega-3 fatty acid supplementation on the level of paraoxonase and arylesterase activity in streptozotocin-induced diabetic rats: an investigation of activities in plasma, and heart and liver homogenates. Singap Med J 57:153–156

    Google Scholar 

  • Zhang X, Yan G, Li Y, Zhu W, Wang H (2010) DC260126, a small-molecule antagonist of GPR40, improves insulin tolerance but not glucose tolerance in obese Zucker rats. Biomed Pharmacother 64:647–651

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SF performed the experiments. All authors contributed equally to all other parts of this study (experiment design, data analysis, manuscript writing and revision), approved the final version, and agreed for publication.

Corresponding author

Correspondence to Islam A. A. E.-H. Ibrahim.

Ethics declarations

All procedures were conducted in accordance with the accepted principles for care and use of laboratory animals and were approved by the animal ethics committee of Faculty of Pharmacy, Zagazig University (Protocol no. P20/12/2017).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 2043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Fayoumi, S.H., Mahmoud, A.A.A., Fahmy, A. et al. Effect of omega-3 fatty acids on glucose homeostasis: role of free fatty acid receptor 1. Naunyn-Schmiedeberg's Arch Pharmacol 393, 1797–1808 (2020). https://doi.org/10.1007/s00210-020-01883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01883-5

Keywords

Navigation