Skip to main content

Advertisement

Log in

Evaluation of the pharmacological involvement of ATP-sensitive potassium (KATP) channels in the antidepressant-like effects of topiramate on mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Acute doses of topiramate (TPM) have been shown to reduce immobility time in the mice forced swimming test (FST) through inhibition of the nitric oxide (NO) pathway. Adenosine triphosphate–sensitive potassium (KATP) channels are known to have an active role in depression. This study investigates the potential participation of KATP channels in the antidepressant-like effect of TPM through the stimulatory effects of NO. FST and tail suspension tests (TST) were applied to adult male mice for assessment of the antidepressant-like activity of TPM. Different doses of glibenclamide and cromakalim were also applied in order to investigate the involvement of KATP channels. Fluoxetine was used as a positive control for evaluation of antidepressant-like effects. In addition, each animal’s locomotor activity was evaluated by the open-field test (OFT). TPM (30 mg/kg intraperitoneal (i.p.)) had a significant reductive effect on the immobility behavior similar to fluoxetine (20 mg/kg). Co-administration of sub-effective doses of glibenclamide (1 mg/kg i.p.) and TPM (10 mg/kg i.p.) led to significant synergistic effects in FST and TST. Additionally, the results showed that administration of the sub-effective dose of cromakalim (0.1 and 0.3 mg/kg i.p.) blocked the antidepressant-like effects of TPM (30 mg/kg i.p.) in both tests. These interventions had no impact on the locomotor movement of mice in OFT. This study shows that the antidepressant-like activity of TPM may potentially be mediated by the blocking of the KATP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appolinario JC, Fontenelle LF, Papelbaum M, Bueno JR, Coutinho W (2002) Topiramate use in obese patients with binge eating disorder: an open study. Can J Psychiatr 47:271–273

    Article  Google Scholar 

  • Armstead W (1996) Role of ATP-sensitive K+ channels in cGMP-mediated pial artery vasodilation. Am J Phys Heart Circ Phys 270:H423–H426

    CAS  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  CAS  PubMed  Google Scholar 

  • Blier P, De Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    Article  CAS  PubMed  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, and Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368(6474):850. Link for 1: https://www.nature.com/articles/368850a0

  • Bourin M, Chenu F, Hascoët M (2009) Topiramate and phenytoin anti-immobility effect in the mice forced swimming test is reversed by veratrine: implication for bipolar depression treatment. Behav Brain Res 205:421–425

    Article  CAS  PubMed  Google Scholar 

  • Briley M, Moret C (1993) Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol 16:387–400

    Article  CAS  PubMed  Google Scholar 

  • Coomans C, Geerling J, Berg S, Diepen H, Garcia-Tardón N, Thomas A, Schröder-van der Elst J, Ouwens D, Pijl H, Rensen P (2013) The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system. Br J Pharmacol 170:908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115:655–666

    Article  CAS  PubMed  Google Scholar 

  • Delgado P, Moreno F (1999) Antidepressants and the brain. Int Clin Psychopharmacol 14:S9–S16

    Article  PubMed  Google Scholar 

  • Dodgson SJ, Shank RP, Maryanoff BE (2000) Topiramate as an inhibitor of carbonic anhydrase isoenzymes. Epilepsia 41:35–39

    Article  Google Scholar 

  • Esposito E (2006) Serotonin-dopamine interaction as a focus of novel antidepressant drugs. Curr Drug Targets 7:177–185

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Kong H, Ye X, Ding J, Hu G (2016) ATP-sensitive potassium channels: uncovering novel targets for treating depression. Brain Struct Funct 221:3111–3122

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Nakaya S, Wakatsuki T, Miyoshi Y, Nakaya Y, Mori H, Inoue I (1991) Effects of nitroglycerin on ATP-induced Ca (++)-mobilization, Ca (++)-activated K channels and contraction of cultured smooth muscle cells of porcine coronary artery. J Pharmacol Exp Ther 256:371–377

    CAS  PubMed  Google Scholar 

  • Galeotti N, Ghelardini C, Caldari B, Bartolini A (1999) Effect of potassium channel modulators in mouse forced swimming test. Br J Pharmacol 126:1653–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galicia SC, Lewis SL, Metman LV (2005) Severe topiramate-associated hyperthermia resulting in persistent neurological dysfunction. Clin Neuropharmacol 28:94–95

    Article  PubMed  Google Scholar 

  • Gibbs JW, Sombati S, DeLorenzo RJ, Coulter DA (2000) Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 41:10–16

    Article  Google Scholar 

  • Glauser TA (1999) Topiramate. Epilepsia 40:s71–s80

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Todd K, Bourin M, Hascoet M, Kouadio F (1996) Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade. Pharmacol Biochem Behav 54:725–730

    Article  CAS  PubMed  Google Scholar 

  • Haj-Mirzaian A, Ostadhadi S, Kordjazy N, Dehpour AR, Mehr SE (2014) Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test. Eur J Pharmacol 735:26–31

    Article  CAS  PubMed  Google Scholar 

  • Haj-Mirzaian A, Kordjazy N, Haj-Mirzaian A, Ostadhadi S, Ghasemi M, Amiri S, Faizi M, Dehpour A (2015) Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests. Psychopharmacology 232:3551–3561

    Article  CAS  PubMed  Google Scholar 

  • Haj-Mirzaian A, Kordjazy N, Ostadhadi S, Amiri S, Haj-Mirzaian A, Dehpour A (2016) Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors. Can J Physiol Pharmacol 94:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves GA, McGregor IS (2007) Topiramate moderately reduces the motivation to consume alcohol and has a marked antidepressant effect in rats. Alcohol Clin Exp Res 31:1900–1907

    Article  CAS  PubMed  Google Scholar 

  • Herrero AI, Del Olmo N, González-Escalada JR, Solı́s JM (2002) Two new actions of topiramate: inhibition of depolarizing GABA A-mediated responses and activation of a potassium conductance. Neuropharmacology 42:210–220

    Article  CAS  PubMed  Google Scholar 

  • Inan SY, Yalcin I, Aksu F (2004) Dual effects of nitric oxide in the mouse forced swimming test: possible contribution of nitric oxide-mediated serotonin release and potassium channel modulation. Pharmacol Biochem Behav 77:457–464

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Ha TS, Park CS, Uhm DY, Chung S (2001) Nitric oxide directly activates large conductance Ca 2+-activated K+ channels (rSlo). Mol Cell (Springer Science & Business Media BV) 12(1)

  • Jesse CR, Wilhelm EA, Barbosa NB, Nogueira CW (2009) Involvement of different types of potassium channels in the antidepressant-like effect of tramadol in the mouse forced swimming test. Eur J Pharmacol 613:74–78

    Article  CAS  PubMed  Google Scholar 

  • Kaster MP, Ferreira PK, Santos AR, Rodrigues AL (2005) Effects of potassium channel inhibitors in the forced swimming test: possible involvement of L-arginine-nitric oxide-soluble guanylate cyclase pathway. Behav Brain Res 165:204–209

    Article  CAS  PubMed  Google Scholar 

  • Khaloo P, Sadeghi B, Ostadhadi S, Norouzi-Javidan A, Haj-Mirzaian A, Zolfagharie S, Dehpour AR (2016) Lithium attenuated the behavioral despair induced by acute neurogenic stress through blockade of opioid receptors in mice. Biomed Pharmacother 83:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Washiyama K, Ikeda K (2006) Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine. J Pharmacol Sci 102:278–287

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Hirai H, Iino M, Fuse I, Mitsumura K, Washiyama K, Kasai S, Ikeda K (2009) Inhibitory effects of the antiepileptic drug ethosuximide on G protein-activated inwardly rectifying K+ channels. Neuropharmacology 56:499–506

    Article  CAS  PubMed  Google Scholar 

  • Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Kordjazy M, Sharifzadeh M, Dehpour AR (2015) Elevated level of nitric oxide mediates the anti-depressant effect of rubidium chloride in mice. Eur J Pharmacol 762:411–418

    Article  CAS  PubMed  Google Scholar 

  • Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Amini-khoei H, Dehpour AR (2016) Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test. Pharmacol Biochem Behav 141:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lambert G, Johansson M, Ågren H, Friberg P (2000) Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 57:787–793

    Article  CAS  PubMed  Google Scholar 

  • Maidment ID (2002) The use of topiramate in mood stabilization. Ann Pharmacother 36:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Marcotte D (1998) Use of topiramate, a new anti-epileptic as a mood stabilizer. J Affect Disord 50:245–251

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110:135–370

    Article  CAS  PubMed  Google Scholar 

  • Nikoui V, Ostadhadi S, Azhand P, Zolfaghari S, Amiri S, Foroohandeh M, Motevalian M, Sharifi AM, Bakhtiarian A (2016) The effect of nitrazepam on depression and curiosity in behavioral tests in mice: the role of potassium channels. Eur J Pharmacol 791:369–376

    Article  CAS  PubMed  Google Scholar 

  • Nutt DJ (2007) Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 69:4–7

    Google Scholar 

  • Ostadhadi S, Haj-Mirzaian A, Nikoui V, Kordjazy N, Dehpour AR (2015) Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251 after physical stress in mice. Clinical and Experimental Pharmacology and Physiology

  • Ostadhadi S, Ahangari M, Nikoui V, Norouzi-Javidan A, Zolfaghari S, Jazaeri F, Chamanara M, Akbarian R, Dehpour A-R (2016a) Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test. Biomed Pharmacother 82:713–721

    Article  CAS  PubMed  Google Scholar 

  • Ostadhadi S, Khan MI, Norouzi-Javidan A, Chamanara M, Jazaeri F, Zolfaghari S, Dehpour AR (2016) Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test. Brain Res Bull 122:62–70

  • Ostadhadi S, Khan MI, Norouzi-Javidan A, Chamanara M, Jazaeri F, Zolfaghari S, Dehpour A-R (2016c) Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test. Brain Res Bull 122:62–70

    Article  CAS  PubMed  Google Scholar 

  • Ostadhadi S, Akbarian R, Norouzi-Javidan A, Nikoui V, Zolfaghari S, Chamanara M, Dehpour A-R (2017) Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test. Can J Physiol Pharmacol 95:795–802

    Article  CAS  PubMed  Google Scholar 

  • Papazian DM (1999) Potassium channels. Neuron 23:7–10

    Article  CAS  PubMed  Google Scholar 

  • Pineda E, Shin D, Sankar R, Mazarati AM (2010) Comorbidity between epilepsy and depression: experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia 51:110–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Racagni G, Popoli M (2010) The pharmacological properties of antidepressants. Int Clin Psychopharmacol 25:117–131

    Article  PubMed  Google Scholar 

  • Sankar R, Mazarati A (2012) Neurobiology of depression as a comorbidity of epilepsy. InJasper's Basic Mechanisms of the Epilepsies [Internet], 4th edn. National Center for Biotechnology Information (US)

  • Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81:133–176

    Article  CAS  PubMed  Google Scholar 

  • Shin JH, Chung S, Park EJ, Uhm D-Y, Suh CK (1997) Nitric oxide directly activates calcium-activated potassium channels from rat brain reconstituted into planar lipid bilayer. FEBS Lett 415:299–302

    Article  CAS  PubMed  Google Scholar 

  • Stahl SM, Stahl SM (2013) Stahl's essential psychopharmacology: neuroscientific basis and practical applications. Cambridge University Press

  • Stella F, Caetano D, Cendes F, Guerreiro CA (2002) Acute psychotic disorders induced by topiramate: report of two cases. Arq Neuropsiquiatr 60:285–287

    Article  PubMed  Google Scholar 

  • Taverna S, Sancini G, Mantegazza M, Franceschetti S, Avanzini G (1999) Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J Pharmacol Exp Ther 288:960–968

    CAS  PubMed  Google Scholar 

  • Von Seggern RL, Mannix LK, Adelman JU (2002) Efficacy of topiramate in migraine prophylaxis: a retrospective chart analysis. Headache 42:804–809

    Article  Google Scholar 

  • Wang R, Xu Y, Wu H-L, Li Y-B, Li Y-H, Guo J-B, Li X-J (2008) The antidepressant effects of curcumin in the forced swimming test involve 5-HT 1 and 5-HT 2 receptors. Eur J Pharmacol 578:43–50

    Article  CAS  PubMed  Google Scholar 

  • White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH (1997) Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res 28:167–179

    Article  CAS  PubMed  Google Scholar 

  • White HS, Brown SD, Woodhead J, Skeen GA, Wolf HH (2000) Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanism. Epilepsia 41:17–20

    Article  Google Scholar 

  • Wickenden AD (2002) K+ channels as therapeutic drug targets. Pharmacol Ther 94:157–182

    Article  CAS  PubMed  Google Scholar 

  • Wiegartz P, Seidenberg M, Woodard A, Gidal B, Hermann B (1999) Co-morbid psychiatric disorder in chronic epilepsy: recognition and etiology of depression. Neurology

  • Zhang X, Velumian AA, Jones OT, Carlen PL (2000) Modulation of high-voltage–activated calcium channels in dentate granule cells by topiramate. Epilepsia 41:52–60

    Article  Google Scholar 

  • Zona C, Ciotti MT, Avoli M (1997) Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci Lett 231:123–126

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Experimental Medicine Research Center, Tehran University of Medical Sciences (Grant No. 95-04-139-33933) and by a grant (96002757) from the Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

AD and SS conceived and designed research. SS, MR, KA, KK, KS and NS, and AH and SJ conducted experiments and contributed in writing the manuscript. KA and MR analyzed the data. KR performed the final language editing of the manuscript in addition to reviewing and revising the whole content. All authors read and approved the manuscript.

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakiba, S., Rezaee, M., Afshari, K. et al. Evaluation of the pharmacological involvement of ATP-sensitive potassium (KATP) channels in the antidepressant-like effects of topiramate on mice. Naunyn-Schmiedeberg's Arch Pharmacol 392, 833–842 (2019). https://doi.org/10.1007/s00210-019-01636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01636-z

Keywords

Navigation