Skip to main content
Log in

The potential curative effect of rebamipide in hepatic ischemia/reperfusion injury

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Rebamipide (Reba), a gastroprotective drug, has signified its hepatoprotective activity; however, its possible post-therapeutic intervention in hepatic ischemia/reperfusion (I/R) remains elusive. Consequently, the intent of this study was to test Reba modulatory effect on nuclear factor (NF)-κB signaling in hepatic I/R model. Rats were randomized into sham, I/R, Reba 60, and Reba100 (60 and 100 mg/kg, respectively) groups. Ischemia was induced for 30 min followed by 3-day reperfusion to set up a model of partial (70%) warm hepatic ischemia. Post-treatment with Reba reduced the serum level of alanine transaminase, improved histopathological alterations of the liver, and elevated hepatic adenosine triphosphate. It also lowered hepatic lipid peroxides and increased both total antioxidant capacity and nitric oxide. Besides, Reba decreased tumor necrosis factor-α, interferon-γ, intercellular adhesion molecule-1, myeloperoxidase, prostaglandin E2, cyclooxygenase-2 expression/content, and caspase-3 activity. Reba also upregulated the gene expression/content of sirtuin 1 (SIRT-1), while it downregulated that of high mobility group box (HMGB)1 and reduced the expression/content of NF-κB p65/pS536-NF-κB and the content of pT180/Y182-p38MAPK. Reba provided tenable hepato-therapeutic mechanisms to mitigate events concomitant with hepatic I/R via inhibition of NF-κB p65 and modulation of its influential signals (SIRT-1, HMGB1, p38MAPK) associated with its antiinflammatory, antioxidant, and antiapoptotic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

COX-2:

Cyclooxygenase-2

GAPDH:

Glyceraldehyde-3 phosphate dehydrogenase

H&E:

Hematoxylin and eosin

HMGB1:

High mobility group box 1

I/R:

Ischemia/reperfusion

ICAM-1:

Intercellular adhesion molecule-1

IFN-γ:

Interferon-gamma

MDA:

Malondialdehyde

MPO:

Myeloperoxidase

NAD+ :

Nicotinamide adenine dinucleotide

NF-κB p65:

Nuclear factor-kappa B p65

NIH:

National Institutes of Health

NOx:

Total nitric oxide

p38 MAPK:

p38 mitogen-activated protein kinase

PGE2 :

Prostaglandin E2

qPCR:

Quantitative real-time polymerase chain reaction

Reba:

Rebamipide

ROS:

Reactive oxygen species

SEM:

Standard error of mean

SIRT-1:

Sirtuin 1

TAC:

Total antioxidant capacity

TNF-α:

Tumor necrosis factor-alpha

References

  • Abe Y, Hines IN, Zibari G, Pavlick K, Gray L, Kitagawa Y, Grisham MB (2009) Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med 46:1–7. doi:10.1016/j.freeradbiomed.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  • Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A (2010) Liver ischemia/reperfusion injury: processes in inflammatory networks—a review. Liver Transpl 16:1016–1032. doi:10.1002/lt.22117

    Article  PubMed  Google Scholar 

  • Aihara M, Imagawa K, Funakoshi Y, Ohmoto Y, Kikuchi M (1998) Effects of rebamipide on production of several cytokines by human peripheral blood mononuclear cells. Dig Dis Sci 43:160S–166S

    CAS  PubMed  Google Scholar 

  • Arakawa T, Kobayashi K, Yoshikawa T, Tarnawski A (1998) Rebamipide: overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig Dis Sci 43:5S–13S

    CAS  PubMed  Google Scholar 

  • Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325. doi:10.1152/ajpcell.00616.2005

    Article  CAS  PubMed  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  • Biel TG et al (2016) Sirtuin 1 suppresses mitochondrial dysfunction of ischemic mouse livers in a mitofusin 2-dependent manner. Cell Death Differ 23:279–290. doi:10.1038/cdd.2015.96

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  • Brenmoehl J, Hoeflich A (2013) Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13:755–761. doi:10.1016/j.mito.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83. doi:10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao L, Mei Q, Xu JM, Liu XC, Hu J, Jin J, Yao Q, Chen ML (2012) Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice. World J Gastroenterol 18:1059–1066. doi:10.3748/wjg.v18.i10.1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhood A, McGuire GM, Manning AM, Miyasaka M, Smith CW, Jaeschke H (1995) Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. J Leukoc Biol 57:368–374

    CAS  PubMed  Google Scholar 

  • Gendy A, El-Abhar H, Mohsen A (2014) Cilostazol hepatoprotective effect against ischemia/reperfusion: involvement of gsk-3β, cyclin D1 and Wnt/β-catenin pathway. J Pharmacol Res 4:75–81

    CAS  Google Scholar 

  • Hahm KB, Kim DH, Lee KM, Lee JS, Surh YJ, Kim YB, Yoo BM, Kim JH, Joo HJ, Cho YK, Nam KT, Cho SW (2003) Effect of long-term administration of rebamipide on Helicobacter pylori infection in mice. Aliment Pharmacol Ther 18(Suppl 1):24–38

    Article  CAS  PubMed  Google Scholar 

  • Hamada T, Tsuchihashi S, Avanesyan A, Duarte S, Moore C, Busuttil RW, Coito AJ (2008) Cyclooxygenase-2 deficiency enhances Th2 immune responses and impairs neutrophil recruitment in hepatic ischemia/reperfusion injury. J Immunol 180:1843–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiratsuka T, Futagami S, Shindo T, Hamamoto T, Ueki N, Suzuki K, Shinji Y, Kusunoki M, Shinoki K, Wada K, Miyake K, Gudis K, Tsukui T, Sakamoto C (2005a) Rebamipide reduces indomethacin-induced gastric injury in mice via down-regulation of ICAM-1 expression. Dig Dis Sci 50(Suppl 1):S84–S89. doi:10.1007/s10620-005-2811-6

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka T, Futagami S, Tatsuguchi A, Suzuki K, Shinji Y, Kusunoki M, Shinoki K, Nishigaki H, Fujimori S, Wada K, Miyake K, Gudis K, Tsukui T, Sakamoto C (2005b) COX-1 and COX-2 conversely promote and suppress ischemia-reperfusion gastric injury in mice. Scand J Gastroenterol 40:903–913

    Article  CAS  PubMed  Google Scholar 

  • Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253–262. doi:10.1016/j.bbapap.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  • Kim CD, Hong KW (1995) Preventive effect of rebamipide on gastric lesions induced by ischemia-reperfusion in the rat. J Pharmacol Exp Ther 275:340–344

    CAS  PubMed  Google Scholar 

  • Kim JS, Kim JM, Jung HC, Song IS (2003) The effect of rebamipide on the expression of proinflammatory mediators and apoptosis in human neutrophils by Helicobacter pylori water-soluble surface proteins. Aliment Pharmacol Ther 18(Suppl 1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Kim CD, Kim YK, Lee SH, Hong KW (2000) Rebamipide inhibits neutrophil adhesion to hypoxia/reoxygenation-stimulated endothelial cells via nuclear factor-kappaB-dependent pathway. J Pharmacol Exp Ther 294:864–869

    CAS  PubMed  Google Scholar 

  • King LA, Toledo AH, Rivera-Chavez FA, Toledo-Pereyra LH (2009) Role of p38 and JNK in liver ischemia and reperfusion. J Hepato-Biliary-Pancreat Surg 16:763–770. doi:10.1007/s00534-009-0155-x

    Article  Google Scholar 

  • Kojima M, Iwakiri R, Wu B, Fujise T, Watanabe K, Lin T, Amemori S, Sakata H, Shimoda R, Oguzu T, Ootani A, Tsunada S, Fujimoto K (2003) Effects of antioxidative agents on apoptosis induced by ischaemia-reperfusion in rat intestinal mucosa. Aliment Pharmacol Ther 18(Suppl 1):139–145

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Nakamura Y, Osawa T, Uchida K (2002) Role of p38 mitogen-activated protein kinase in the 4-hydroxy-2-nonenal-induced cyclooxygenase-2 expression. Arch Biochem Biophys 397:240–245. doi:10.1006/abbi.2001.2601

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Kim KH (1995) Rebamipide ameliorates hepatic dysfunction induced by ischemia/reperfusion in rats. Eur J Pharmacol 294:41–46

    Article  CAS  PubMed  Google Scholar 

  • Li P, Zhao Y, Wu X, Xia M, Fang M, Iwasaki Y, Sha J, Chen Q, Xu Y, Shen A (2012) Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res 40:1609–1620. doi:10.1093/nar/gkr984

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38:864–878. doi:10.1016/j.molcel.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  • Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX (2010) HMGB1 activates nuclear factor-kappaB signaling by RAGE and increases the production of TNF-alpha in human umbilical vein endothelial cells. Immunobiology 215:956–962. doi:10.1016/j.imbio.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  • Lv H, Wang L, Shen J, Hao S, Ming A, Wang X, Zhang Z (2015) Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull 115:30–36. doi:10.1016/j.brainresbull.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  • Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43:S31–S44. doi:10.1002/hep.21062

    Article  CAS  PubMed  Google Scholar 

  • Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104:14855–14860. doi:10.1073/pnas.0704329104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. doi:10.1006/niox.2000.0319

    Article  CAS  PubMed  Google Scholar 

  • Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA (2008) Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res 147:153–159

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HX, O’Barr TJ, Anderson AJ (2007) Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-α. J Neurochem 102:900–912. doi:10.1111/j.1471-4159.2007.04643.x

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Yu H, Huang S, Zhu P (2016) Resveratrol protects against TNF-α-induced injury in human umbilical endothelial cells through promoting sirtuin-1-induced repression of NF-KB and p38 MAPK. PLoS One 11:e0147034. doi:10.1371/ journal.pone.0147034

    Article  PubMed  PubMed Central  Google Scholar 

  • Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Ben Abdennebi H, Rosello-Catafau J (2013) Role of sirtuins in ischemia-reperfusion injury. World J Gastroenterol 19:7594–7602. doi:10.3748/wjg.v19.i43.7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH (2009) Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Investig Surg 22:46–55. doi:10.1080/08941930802709470

    Article  Google Scholar 

  • Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338. doi:10.1016/j.cmet.2009.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YH, Dai SM, Tang GS, Zhang J, Ren D, Wang ZW, Shen Q (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol 183:6244–6250

    Article  CAS  PubMed  Google Scholar 

  • Rendon-Mitchell B, Ochani M, Li J, Han J, Wang H, Yang H, Susarla S, Czura C, Mitchell RA, Chen G, Sama AE, Tracey KJ, Wang H (2003) IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol 170:3890–3897

    Article  CAS  PubMed  Google Scholar 

  • Rickenbacher A, Jang JH, Limani P, Ungethum U, Lehmann K, Oberkofler CE, Weber A, Graf R, Humar B, Clavien PA (2014) Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J Hepatol 61:301–308. doi:10.1016/j.jhep.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  • Schmitz ML, Weber A, Roxlau T, Gaestel M, Kracht M (2011) Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochim Biophys Acta 1813:2165–2175. doi:10.1016/j.bbamcr.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    CAS  PubMed  Google Scholar 

  • Stoffels B, Yonezawa K, Yamamoto Y, Schafer N, Overhaus M, Klinge U, Kalff JC, Minor T, Tolba RH (2011) Meloxicam, a COX-2 inhibitor, ameliorates ischemia/reperfusion injury in non-heart-beating donor livers. Eur Surg Res 47:109–117. doi:10.1159/000329414

    Article  CAS  PubMed  Google Scholar 

  • Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11. doi:10.1172/JCI11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuhara K, Hamada Y, Tanaka H, Yamada M, Ozaki T, Matsui K, Kamiyama Y, Nishizawa M, Ito S, Okumura T (2008) Rebamipide, anti-gastric ulcer drug, up-regulates the induction of iNOS in proinflammatory cytokine-stimulated hepatocytes. Nitric Oxide 18:28–36. doi:10.1016/j.niox.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  • Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, Billiar TR (2007) HMGB1 release induced by liver ischemia involves toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204:2913–2923. doi:10.1084/jem.20070247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, Billiar TR (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135–1143. doi:10.1084/jem.20042614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FP, Li L, Li J, Wang JY, Wang LY, Jiang W (2013) High mobility group box-1 promotes the proliferation and migration of hepatic stellate cells via TLR4-dependent signal pathways of PI3K/Akt and JNK. PLoS One 8:e64373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki K, Kanbe T, Chijiwa T, Ishiyama H, Morita S (1987) Gastric mucosal protection by OPC-12759, a novel antiulcer compound, in the rat. Eur J Pharmacol 142:23–29

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Naito Y, Tanigawa T, Kondo M (1993) Free radical scavenging activity of the novel anti-ulcer agent rebamipide studied by electron spin resonance. Arzneimittelforschung 43:363–366

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. A. Bakear (Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt) for his assistance in the histopathological examination.

Author information

Authors and Affiliations

Authors

Contributions

A.M.G., D.M.A., and H.S.E. conceived and designed the experiments, wrote the manuscript, and approved the final submission. A.M.G. performed the experiments and analyzed the data. H.S.E. and D.M.A. lead the research.

Corresponding author

Correspondence to Dalaal M. Abdallah.

Ethics declarations

The study was approved by the Research Ethics Committee (Faculty of Pharmacy, Cairo University, Cairo, Egypt; PT 1302) and complies with the published Guide for Care and Use of Laboratory Animals No. 8023 (NIH Publications, USA, 1978).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gendy, A.M., Abdallah, D.M. & El-Abhar, H.S. The potential curative effect of rebamipide in hepatic ischemia/reperfusion injury. Naunyn-Schmiedeberg's Arch Pharmacol 390, 691–700 (2017). https://doi.org/10.1007/s00210-017-1370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1370-7

Keywords

Navigation