Skip to main content

Advertisement

Log in

Pioglitazone alleviates cardiac and vascular remodelling and improves survival in monocrotaline induced pulmonary arterial hypertension

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is a fatal disease with limited therapeutic options. Pathophysiological changes comprise obliterative vascular remodelling of small pulmonary arteries, elevated mean pulmonary arterial systolic pressure (PASP) due to elevated resistance of pulmonary vasculature, adverse right ventricular remodelling, and heart failure. Recent findings also indicate a role of increased inflammation and insulin resistance underlying the development of PAH. We hypothesized that treatment of this condition with the peroxisome proliferator-activated receptor-γ (PPARγ) activator pioglitazone, known to regulate the expression of different genes addressing insulin resistance, inflammatory changes, and vascular remodelling, could be a beneficial approach. PAH was induced in adult rats by a single subcutaneous injection of monocrotaline (MCT). Pioglitazone was administered for 2 weeks starting 3 weeks after MCT-injection. At day 35, hemodynamics, organ weights, and -indices were measured. We performed morphological and molecular characterization of the pulmonary vasculature, including analysis of the degree of muscularization, proliferation rates, and medial wall thickness of the small pulmonary arteries. Furthermore, markers of cardiac injury, collagen content, and cardiomyocyte size were analyzed. Survival rates were monitored throughout the experimental period. Pioglitazone treatment improved survival, reduced PASP, muscularization of small pulmonary arteries, and medial wall thickness. Further, MCT-induced right ventricular hypertrophy and fibrosis were attenuated. This was accompanied with reduced cardiac expression of brain natriuretic peptide, as well as decreased cardiomyocyte size. Finally, pulmonary macrophage content and osteopontin gene expression were attenuated. Based on the beneficial impact of pioglitazone, activation of PPARγ might be a promising treatment option in PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M, Nemenoff RA, Geraci MW, Voelkel NF (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 92:1162–1169

    Article  CAS  PubMed  Google Scholar 

  • Caglayan E, Blaschke F, Takata Y, Hsueh WA (2005) Metabolic syndrome-interdependence of the cardiovascular and metabolic pathways. Curr Opin Pharmacol 5:135–142

    Article  CAS  PubMed  Google Scholar 

  • Caglayan E, Stauber B, Collins AR, Lyon CJ, Yin F, Liu J, Rosenkranz S, Erdmann E, Peterson LE, Ross RS, Tangirala RK, Hsueh WA (2008) Differential roles of cardiomyocyte and macrophage peroxisome proliferator-activated receptor gamma in cardiac fibrosis. Diabetes 57:2470–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossno JT Jr, Garat CV, Reusch JE, Morris KG, Dempsey EC, McMurtry IF, Stenmark KR, Klemm DJ (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292:L885–L897

    Article  CAS  PubMed  Google Scholar 

  • Dias-Neto M, Luisa-Neves A, Pinho S, Goncalves N, Mendes M, Eloy C, Lopes JM, Goncalves D, Ferreira-Pinto M, Leite-Moreira AF, Henriques-Coelho T (2015) Pathophysiology of infantile pulmonary arterial hypertension induced by monocrotaline. Pediatr Cardiol 36:1000–1013

    Article  PubMed  Google Scholar 

  • Dickinson MG, Kowalski PS, Bartelds B, Borgdorff MA, van der Feen D, Sietsma H, Molema G, Kamps JA, Berger RM (2014) A critical role for Egr-1 during vascular remodelling in pulmonary arterial hypertension. Cardiovasc Res 103:573–584

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Jiang Y, Xiao X, Peng Y, Yang M (2015) Protective effect of pioglitazone on sepsis-induced intestinal injury in a rodent model. J Surg Res 195:550–558

    Article  CAS  PubMed  Google Scholar 

  • Geraci MW, Moore M, Gesell T, Yeager ME, Alger L, Golpon H, Gao B, Loyd JE, Tuder RM, Voelkel NF (2001) Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res 88:555–562

    Article  CAS  PubMed  Google Scholar 

  • Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, Sheikh AY, Suen RS, Stewart DJ, Rabinovitch M (2007) Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 115:1275–1284

    CAS  PubMed  Google Scholar 

  • Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM, Guignabert C, Bekker JM, Schellong S, Urashima T, Wang L, Morrell NW, Rabinovitch M (2008) An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 118:1846–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Hu Z, Huang X, Chen Y, He X, Xu H, Wang N (2014) Serum osteopontin, but not OPN gene polymorphism, is associated with LVH in essential hypertensive patients. J Mol Med (Berl) 92:487–495

    Article  CAS  Google Scholar 

  • Hsueh WA, Jackson S, Law RE (2001) Control of vascular cell proliferation and migration by PPAR-gamma: a new approach to the macrovascular complications of diabetes. Diabetes Care 24:392–397

    Article  CAS  PubMed  Google Scholar 

  • Kim EK, Lee JH, Oh YM, Lee YS, Lee SD (2010) Rosiglitazone attenuates hypoxia-induced pulmonary arterial hypertension in rats. Respirology 15:659–668

    Article  PubMed  Google Scholar 

  • Kozlowska H, Baranowska-Kuczko M, Schlicker E, Kozlowski M, Kloza M, Malinowska B (2013) Relaxation of human pulmonary arteries by PPARgamma agonists. Naunyn Schmiedeberg’s Arch Pharmacol 386:445–453

    Article  CAS  Google Scholar 

  • Lai YC, Potoka KC, Champion HC, Mora AL, Gladwin MT (2014) Pulmonary arterial hypertension: the clinical syndrome. Circ Res 115:115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Olson P, Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li Z, Sun X, Yang L, Fang P, Liu Y, Li W, Xu J, Lu J, Xie M, Zhang D (2010) Heme oxygenase-1/p21WAF1 mediates peroxisome proliferator-activated receptor-gamma signaling inhibition of proliferation of rat pulmonary artery smooth muscle cells. FEBS J 277:1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Mam V, Tanbe AF, Vitali SH, Arons E, Christou HA, Khalil RA (2010) Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Exp Ther 332:455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda Y, Hoshikawa Y, Ameshima S, Suzuki S, Okada Y, Tabata T, Sugawara T, Matsumura Y, Kondo T (2005) Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats. Nihon Kokyuki Gakkai Zasshi 43:283–288

    PubMed  Google Scholar 

  • Matsuura N, Asano C, Nagasawa K, Ito S, Sano Y, Minagawa Y, Yamada Y, Hattori T, Watanabe S, Murohara T, Nagata K (2015) Effects of pioglitazone on cardiac and adipose tissue pathology in rats with metabolic syndrome. Int J Cardiol 179:360–369

    Article  PubMed  Google Scholar 

  • Michelakis ED (2014) Pulmonary arterial hypertension: yesterday, today, tomorrow. Circ Res 115:109–114

    Article  CAS  PubMed  Google Scholar 

  • Michelakis ED, Wilkins MR, Rabinovitch M (2008) Emerging concepts and translational priorities in pulmonary arterial hypertension. Circulation 118:1486–1495

    Article  PubMed  Google Scholar 

  • Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER, Sutliff RL, Hart CM (2010) Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 42:482–490

    Article  PubMed  PubMed Central  Google Scholar 

  • Ota D, Kanayama M, Matsui Y, Ito K, Maeda N, Kutomi G, Hirata K, Torigoe T, Sato N, Takaoka A, Chambers AF, Morimoto J, Uede T (2014) Tumor-alpha9beta1 integrin-mediated signaling induces breast cancer growth and lymphatic metastasis via the recruitment of cancer-associated fibroblasts. J Mol Med (Berl) 92:1271–1281

    Article  CAS  Google Scholar 

  • Oyama Y, Akuzawa N, Nagai R, Kurabayashi M (2002) PPARgamma ligand inhibits osteopontin gene expression through interference with binding of nuclear factors to A/T-rich sequence in THP-1 cells. Circ Res 90:348–355

    Article  CAS  PubMed  Google Scholar 

  • Palazzuoli A, Ruocco G, Cekorja B, Pellegrini M, Del Castillo G, Nuti R (2015) Combined BNP and echocardiographic assessment in interstitial lung disease for pulmonary hypertension detection. Int J Cardiol 178:34–36

    Article  PubMed  Google Scholar 

  • Paulin R, Michelakis ED (2014) The metabolic theory of pulmonary arterial hypertension. Circ Res 115:148–164

    Article  CAS  PubMed  Google Scholar 

  • Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118:2372–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovitch M, Guignabert C, Humbert M, Nicolls MR (2014) Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331–336

    Article  CAS  PubMed  Google Scholar 

  • Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL (2015) Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl) 93:229–242

    Article  CAS  Google Scholar 

  • Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297:L1013–L1032

    Article  CAS  PubMed  Google Scholar 

  • Tachibana H, Ogawa D, Matsushita Y, Bruemmer D, Wada J, Teshigawara S, Eguchi J, Sato-Horiguchi C, Uchida HA, Shikata K, Makino H (2012) Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J Am Soc Nephrol 23:1835–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Freyhaus H, Dumitrescu D, Schnorbach S, Kappert K, Viethen T, Hellmich M, Hunzelmann N, Rosenkranz S (2015) CT-proET1 predicts pulmonary hemodynamics in scleroderma-associated pulmonary hypertension. Clin Res Cardiol 104:525–529

    Article  PubMed  Google Scholar 

  • Walker LA, Walker JS, Glazier A, Brown DR, Stenmark KR, Buttrick PM (2011) Biochemical and myofilament responses of the right ventricle to severe pulmonary hypertension. Am J Physiol Heart Circ Physiol 301:H832–H840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JX, Rubin LJ (2005) Pathogenesis of pulmonary arterial hypertension: the need for multiple hits. Circulation 111:534–538

    Article  PubMed  Google Scholar 

  • Zaitone SA, Barakat BM, Bilasy SE, Fawzy MS, Abdelaziz EZ, Farag NE (2015) Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: influence on insulin resistance and energy expenditure. Naunyn Schmiedeberg’s Arch Pharmacol 388:587–600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Marga und Walter Boll-Stiftung (210-04-10) to K.K. and E.C. M.T. is supported by a PhD scholarship of the Charité-Nachwuchskommission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Caglayan.

Ethics declarations

All animal care and experiments were performed in accordance with the German Laws for Animal Protections and were approved by the local animal care committee.

Additional information

Arnica Behringer, Manuela Trappiel, Kai Kappert and Evren Caglayan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behringer, A., Trappiel, M., Berghausen, E.M. et al. Pioglitazone alleviates cardiac and vascular remodelling and improves survival in monocrotaline induced pulmonary arterial hypertension. Naunyn-Schmiedeberg's Arch Pharmacol 389, 369–379 (2016). https://doi.org/10.1007/s00210-015-1205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1205-3

Keywords

Navigation