Skip to main content

Advertisement

Log in

Bisphenol A differently inhibits CaV3.1, CaV3.2 and CaV3.3 calcium channels

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is a widespread environmental contaminant detected in urine of 93 % of investigated US population. Recent epidemiological studies found correlation between BPA exposure and diseases including cardiovascular and neuronal disorders. BPA targets include hormone receptors and voltage-dependent ion channels. T-type calcium channels are important regulatory elements in both cardiovascular and neuronal system. Therefore, we investigated effects of BPA on T-type calcium channels. Calcium current flowing through recombinant T-type calcium channels expressed in HEK 293 cells was measured using whole-cell patch clamp. BPA inhibited the current through individual T-type calcium channel subtypes in a concentration-dependent manner with two distinguishable components in these concentration-dependencies. Nanomolar concentrations of BPA inhibited calcium current through T-type calcium channels in the order of efficiency CaV3.2 ≥ CaV3.1 > CaV3.3 without affecting voltage dependence and kinetics of channel gating. Micromolar concentrations of BPA accelerated kinetics of current decay, shifted voltage dependence of steady-state inactivation towards more negative values and inhibited current amplitudes. We suggest that BPA acts as a modifier of channel gating and directly plugs conductive channel pore at high concentration. Concentration range in which inhibition was observed corresponds to concentrations detected in human fluids and therefore may be relevant for evaluation of health effects of BPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aloisi AM, Della Seta D, Rendo C, Ceccarelli I, Scaramuzzino A, Farabollini F (2002) Exposure to the estrogenic pollutant bisphenol A affects pain behavior induced by subcutaneous formalin injection in male and female rats. Brain Res 937(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Asano S, Tune JD, Dick GM (2010) Bisphenol A activates Maxi-K (K(Ca)1.1) channels in coronary smooth muscle. Br J Pharmacol 160(1):160–170. doi:10.1111/j.1476-5381.2010.00687.x

    Article  CAS  PubMed  Google Scholar 

  • Biedermann S, Tschudin P, Grob K (2010) Transfer of bisphenol A from thermal printer paper to the skin. Anal Bioanal Chem 398(1):571–576. doi:10.1007/s00216-010-3936-9

    Article  CAS  PubMed  Google Scholar 

  • Braunrath R, Podlipna D, Padlesak S, Cichna-Markl M (2005) Determination of bisphenol A in canned foods by immunoaffinity chromatography, HPLC, and fluorescence detection. J Agric Food Chem 53(23):8911–8917. doi:10.1021/jf051525j

    Article  CAS  PubMed  Google Scholar 

  • Calafat A (2011) Background Paper on BPA Biomonitoringand Biomarker Studies. World Health Organisation, Geneva

    Google Scholar 

  • Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of α1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83(1):103–109

    Article  CAS  PubMed  Google Scholar 

  • Dekant W, Volkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134

    Article  CAS  PubMed  Google Scholar 

  • Deutschmann A, Hans M, Meyer R, Haberlein H, Swandulla D (2013) Bisphenol a inhibits voltage-activated Ca2+ channels in vitro: mechanisms and structural requirements. Mol Pharmacol 83(2):501–511. doi:10.1124/mol.112.081372

    Article  CAS  PubMed  Google Scholar 

  • Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, Safe S, McDonnell DP, Gaido KW (1998) Bisphenol A interacts with the estrogen receptor α in a distinct manner from estradiol. Mol Cell Endocrinol 142(1–2):203–214. doi:10.1016/S0303-7207(98)00084-7

    Article  CAS  PubMed  Google Scholar 

  • Hajszan T, Leranth C (2010) Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 31(4):519–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311(5986):538–544

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol London 117:500–544

    CAS  PubMed  Google Scholar 

  • Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17(11):2839–2841

    Article  CAS  PubMed  Google Scholar 

  • Klugbauer N, Marais E, Lacinova L, Hofmann F (1999) A T-type calcium channel from mouse brain. Pflugers Arch 437(5):710–715

    Article  CAS  PubMed  Google Scholar 

  • Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg P, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139(10):4252–4263. doi:10.1210/en.139.10.4252

    CAS  PubMed  Google Scholar 

  • Lacinova L (2011) T-type calcium channel blockers—new and notable. Gen Physiol Biophys 30(4):403–409. doi:10.4149/gpb_2011_04_403

    Article  CAS  PubMed  Google Scholar 

  • Lacinova L, Hofmann F (1998) Isradipine interacts with the open state of the L-type calcium channel at high concentrations. Receptors Channels 6(3):153–164

    CAS  PubMed  Google Scholar 

  • Lambert RC, Bessaih T, Crunelli V, Leresche N (2013) The many faces of T-type calcium channels. Pflugers Arch. doi:10.1007/s00424-013-1353-6

    Google Scholar 

  • Lee YJ, Ryu HY, Kim HK, Min CS, Lee JH, Kim E, Nam BH, Park JH, Jung JY, Jang DD, Park EY, Lee KH, Ma JY, Won HS, Im MW, Leem JH, Hong YC, Yoon HS (2008) Maternal and fetal exposure to bisphenol A in Korea. Reprod Toxicol 25(4):413–419

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Kannan K (2011a) High levels of bisphenol A in paper currencies from several countries, and implications for dermal exposure. Environ Sci Technol 45(16):6761–6768. doi:10.1021/es200977t

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Kannan K (2011b) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45(21):9372–9379. doi:10.1021/es202507f

    Article  CAS  PubMed  Google Scholar 

  • Loganathan SN, Kannan K (2011) Occurrence of bisphenol A in indoor dust from two locations in the eastern United States and implications for human exposures. Arch Environ Contam Toxicol 61(1):68–73. doi:10.1007/s00244-010-9634-y

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Calorio C, Vandael DH, Marcantoni A, Carabelli V, Carbone E (2012) Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 51(3–4):321–330

    Article  CAS  PubMed  Google Scholar 

  • Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME (2011) Functional roles of Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels (Austin) 5(3):251–261

    Article  CAS  Google Scholar 

  • Markey CM, Michaelson CL, Veson EC, Sonnenschein C, Soto AM (2001) The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ Health Perspect 109(1):55–60. doi:10.2307/3434921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsushima A, Teramoto T, Okada H, Liu X, Tokunaga T, Kakuta Y, Shimohigashi Y (2008) ERRgamma tethers strongly bisphenol A and 4-α-cumylphenol in an induced-fit manner. Biochem Biophys Res Commun 373(3):408–413

    Article  CAS  PubMed  Google Scholar 

  • Nadal A, Ropero AB, Laribi O, Maillet M, Fuentes E, Soria B (2000) Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor α and estrogen receptor β. Proc Natl Acad Sci U S A 97(21):11603–11608. doi:10.1073/pnas.97.21.11603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ono K, Iijima T (2010) Cardiac T-type Ca2+ channels in the heart. J Mol Cell Cardiol 48(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly AO, Eberhardt E, Weidner C, Alzheimer C, Wallace BA, Lampert A (2012) Bisphenol A Binds to the Local Anesthetic Receptor Site to Block the Human Cardiac Sodium Channel. PLoS One 7(7). doi: 10.1371/journal.pone.0041667

  • Pandey AK, Deshpande SB (2012) Bisphenol A depresses compound action potential of frog sciatic nerve in vitro involving Ca2+-dependent mechanisms. Neurosci Lett 517(2):128–132. doi:10.1016/j.neulet.2012.04.044

    Article  CAS  PubMed  Google Scholar 

  • Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127(1–2):27–34

    Article  CAS  PubMed  Google Scholar 

  • Sajiki J, Takahashi K, Yonekubo J (1999) Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 736(1–2):255–261

    Article  CAS  PubMed  Google Scholar 

  • Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19(6):1895–1911

    CAS  PubMed  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg LN, Hunt PA, Myers JP, Vom Saal FS (2013) Human exposures to bisphenol A: mismatches between data and assumptions. Rev Environ Health 28(1):37–58. doi:10.1515/reveh-2012-0034

    Article  PubMed  Google Scholar 

  • Walsh DE, Dockery P, Doolan CM (2005) Estrogen receptor independent rapid non-genomic effects of environmental estrogens on [Ca2+]i in human breast cancer cells. Mol Cell Endocrinol 230(1–2):23–30. doi:10.1016/j.mce.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  • Wang QA, Cao J, Zhu Q, Luan CY, Chen XD, Yi XH, Ding HX, Chen JA, Cheng J, Xiao H (2011) Inhibition of voltage-gated sodium channels by bisphenol A in mouse dorsal root ganglion neurons. Brain Res 1378:1–8. doi:10.1016/j.brainres.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hua J, Chen M, Xia Y, Zhang Q, Zhao R, Zhou W, Zhang Z, Wang B (2012) High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occup Environ Med 69(9):679–684

    Article  CAS  PubMed  Google Scholar 

  • Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11(11):835–841

    CAS  PubMed  Google Scholar 

  • Zhang Y, Jiang X, Snutch TP, Tao J (2013) Modulation of low-voltage-activated T-type Ca2+ channels. Biochim Biophys Acta 1828(7):1550–1559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant VEGA 2/0044/13. Authors wish to thank Emília Kocúrová for an excellent technical assistance and to Dominika Valachová, Juraj Fuska and Helena Jánošíková for help with certain experiments.

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lacinová Ľubica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaela, P., Mária, K., Silvia, H. et al. Bisphenol A differently inhibits CaV3.1, CaV3.2 and CaV3.3 calcium channels. Naunyn-Schmiedeberg's Arch Pharmacol 387, 153–163 (2014). https://doi.org/10.1007/s00210-013-0932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0932-6

Keywords

Navigation