Skip to main content

Advertisement

Log in

Antiangiogenic role of miR-361 in human umbilical vein endothelial cells: functional interaction with the peptide somatostatin

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Somatostatin (SRIF) acts as antiangiogenic factor, but its role in the regulation of microRNAs (miRNAs) targeting proangiogenic factors is unknown. We used human umbilical vein endothelial cells (HUVEC) to investigate whether (1) miRNAs targeting proangiogenic factors are influenced by hypoxia, (2) their expression is regulated by SRIF, and (3) SRIF-regulated miRNAs affect HUVEC angiogenic phenotype. The involvement of signal transducer and activator of transcription (STAT) 3 and hypoxia inducible factor (HIF)-1 in miRNA effects was studied. Quantitative real-time PCR, Western blot, cell proliferation assays, and enzyme-linked immunosorbent assay (ELISA) were used. Using specific algorithms, three miRNAs (miR-17, miR-18b, and miR-361) were predicted to bind angiogenesis-associated factors including STAT3, HIF-1α, and vascular endothelial growth factor (VEGF). Hypoxia downregulates miR-17 and miR-361 without affecting miR-18b. SRIF restored decreased levels of miR-361 acting at the SRIF receptor sst1. Downregulated miR-361 was also restored by HIF-1α inhibition with YC-1. Combined application of SRIF did not influence YC-1-induced miR-361 downregulation, suggesting that YC-1 and SRIF modulate miR-361 through a common mechanism involving HIF-1α. This possibility was confirmed by the result that HIF-1α activation in normoxia-downregulated miR-361 and that this downregulation was prevented by SRIF. miR-361 overexpression reduced hypoxia-induced cell proliferation and VEGF release indicating miR-361 involvement in the acquisition of an angiogenic phenotype by HUVEC. miR-361 effects on VEGF were enhanced by the coadministration of SRIF. Our results suggest that (1) SRIF regulates miR-361 expression through a control on HIF-1, (2) miR-361 affects HUVEC angiogenic phenotype, and (3) SRIF and miR-361 act cooperatively in limiting hypoxia-induced VEGF release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams RL, Adams IP, Lindow SW, Zhong W, Atkin SL (2005) Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br J Cancer 92:1493–1498

    Article  PubMed  CAS  Google Scholar 

  • Afonyushkin T, Oskolkova OV, Bochkov VN (2012) Permissive role of miR-663 in induction of VEGF and activation of the ATF4 branch of unfolded protein response in endothelial cells by oxidized phospholipids. Atherosclerosis 225:50--55

    Google Scholar 

  • Albini A, Florio T, Giunciuglio D, Masiello L, Carlone S, Corsaro A, Thellung S, Cai T, Noonan DM, Schettini G (1999) Somatostatin controls Kaposi’s sarcoma tumor growth through inhibition of angiogenesis. FASEB J 13:647–655

    PubMed  CAS  Google Scholar 

  • Arena S, Pattarozzi A, Massa A, Esteve JP, Iuliano R, Fusco A, Susini C, Florio T (2007) An intracellular multi-effector complex mediates somatostatin receptor 1 activation of phospho-tyrosine phosphatase eta. Mol Endocrinol 21:229–246

    Article  PubMed  CAS  Google Scholar 

  • Badway AC, West FM, Tente SM, Blake AD (2004) Somatostatin regulates intracellular signaling in human carotid endothelial cells. Biochem Biophys Res Commun 319:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J (2011) MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol 91:471–477

    Article  PubMed  CAS  Google Scholar 

  • Bocci G, Culler MD, Fioravanti A, Orlandi P, Fasciani A, Colucci R, Taylor JE, Sadat D, Danesi R, Del Tacca M (2007) In vitro antiangiogenic activity of selective somatostatin subtype-1 receptor agonists. Eur J Clin 37:700–708

    Article  CAS  Google Scholar 

  • Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernàndez-Hernando C, Suàrez Y (2011) MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 31:2595–2606

    Article  PubMed  CAS  Google Scholar 

  • Chan YC, Khanna S, Roy S, Sen CK (2011) miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 286:2047–2056

    Article  PubMed  CAS  Google Scholar 

  • Chang HL, Hla T (2011) Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends Mol Med 17:650–658

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105:158–166

    Article  PubMed  CAS  Google Scholar 

  • Choi YC, Yoon S, Jeong Y, Yoon J, Baek K (2011) Regulation of vascular endothelial growth factor signaling by miR-200b. Mol Cells 32:77–82

    Article  PubMed  CAS  Google Scholar 

  • Crosby ME, Devlin CM, Glazer PM, Calin GA, Ivan M (2009) Emerging roles of microRNAs in the molecular responses to hypoxia. Curr Pharm Des 15:3861–3866

    Article  PubMed  CAS  Google Scholar 

  • Curtis SB, Hewitt J, Yakubovitz S, Anzarut A, Hsiang YN, Buchan AM (2000) Somatostatin receptor subtype expression and function in human vascular tissue. Am J Physiol Heart Circ Physiol 278:H1815–H1822

    PubMed  CAS  Google Scholar 

  • Dal Monte M, Martini D, Ristori C, Azara D, Armani C, Balbarini A, Bagnoli P (2011) Hypoxia effects on proangiogenic factors in human umbilical vein endothelial cells: functional role of the peptide somatostatin. Naunyn Schmiedeberg's Arch Pharmacol 383:593–612

    Article  CAS  Google Scholar 

  • Danesi R, Agen C, Benelli U, Paolo AD, Nardini D, Bocci G, Basolo F, Campagni A, Del Tacca M (1997) Inhibition of experimental angiogenesis by the somatostatin analogue octreotide acetate (SMS 201–995). Clin Cancer Res 3:265–272

    PubMed  CAS  Google Scholar 

  • De Val S, Black BL (2009) Transcriptional control of endothelial cell development. Dev Cell 16:180–195

    Article  PubMed  Google Scholar 

  • Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C, Hofmann WK, Zeiher AM, Dimmeler S (2010) Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115:4944–4950

    Article  PubMed  CAS  Google Scholar 

  • Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem 283:15878–15883

    Article  PubMed  CAS  Google Scholar 

  • Fernand VE, Losso JN, Truax RE, Villar EE, Bwambok DK, Fakayode SO, Lowry M, Warner IM (2011) Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro. Chem Biol Interact 192:220–232

    Article  PubMed  CAS  Google Scholar 

  • Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  PubMed  CAS  Google Scholar 

  • Florio T (2008) Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases. Mol Cell Endocrinol 286:40–48

    Article  PubMed  CAS  Google Scholar 

  • Gao SM, Chen C, Wu J, Tan Y, Yu K, Xing CY, Ye A, Yin L, Jiang L (2010) Synergistic apoptosis induction in leukemic cells by miR-15a/16-1 and arsenic trioxide. Biochem Biophys Res Commun 403:203–208

    Article  PubMed  CAS  Google Scholar 

  • Gao JJ, Xue X, Gao ZH, Cui SX, Cheng YN, Xu WF, Tang W, Qu XJ (2011) LYP, a bestatin dimethylaminoethyl ester, inhibited cancer angiogenesis both in vitro and in vivo. Microvasc Res 82:122–130

    Article  PubMed  CAS  Google Scholar 

  • Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y, Ramakrishnan S (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest 120:4141–4154

    Article  PubMed  CAS  Google Scholar 

  • Girardi C, De Pittà C, Casara S, Sales G, Lanfranchi G, Celotti L, Mognato M (2012) Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One 7:e31293

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  • Haghikia A, Missol-Kolka E, Tsikas D, Venturini L, Brundiers S, Castoldi M, Muckenthaler MU, Eder M, Stapel B, Thum T, Haghikia A, Petrasch-Parwez E, Drexler H, Hilfiker-Kleiner D, Scherr M (2011) Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes. Eur Heart J 32:1287–1297

    Article  PubMed  CAS  Google Scholar 

  • Han L, Yue X, Zhou X, Lan FM, You G, Zhang W, Zhang KL, Zhang CZ, Cheng JQ, Yu SZ, Pu PY, Jiang T, Kang CS (2012) MicroRNA-21 expression is regulated by β-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther 18:573–583

    Article  PubMed  CAS  Google Scholar 

  • Hannon JP, Nunn C, Stolz B, Bruns C, Weckbecker G, Lewis I, Troxler T, Hurth K, Hoyer D (2002) Drug design at peptide receptors: somatostatin receptor ligands. J Mol Neurosci 18:15–27

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Nunn C, Hannon J, Schoeffter P, Feuerbach D, Schuepbach E, Langenegger D, Bouhelal R, Hurth K, Neumann P, Troxler T, Pfaeffli P (2004) SRA880, in vitro characterization of the first non-peptide somatostatin sst(1) receptor antagonist. Neurosci Lett 361:132–135

    Article  PubMed  CAS  Google Scholar 

  • Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 27(1):e116

    Article  Google Scholar 

  • Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Jia WD, Xu GL, Xu RN, Sun HC, Wang L, Yu JH, Wang J, Li JS, Zhai ZM, Xue Q (2003) Octreotide acts as an antitumor angiogenesis compound and suppresses tumor growth in nude mice bearing human hepatocellular carcinoma xenografts. J Cancer Res Clin Oncol 129:327–334

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Xia XB, XU HZ, Xiong Y, Song WT, Xiong SQ, Li Y (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1α and VEGF. J Cell Physiol 218:66–74

    Article  PubMed  CAS  Google Scholar 

  • Jin F, Brockmeier U, Otterbach F, Metzen E (2012) New Insight into the SDF-1/CXCR4 Axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res 10:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed  Google Scholar 

  • Kajdaniuk D, Marek B, Foltyn W, Kos-Kudła B (2011) Vascular endothelial growth factor (VEGF)—part 2: in endocrinology and oncology. Endokrynol Pol 62:456–464

    PubMed  CAS  Google Scholar 

  • Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational–experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Davuluri RV, Calin GA, Ivan M (2008) A microRNA component of the hypoxic response. Celle Death Differ 15:667–671

    Article  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ (2012) Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrin Metab 97:E1515–E1523

    Article  CAS  Google Scholar 

  • Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15:642–649

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of MiR-221 and MiR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104:476–487

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mao ZG, He DS, Zhou J, Yao B, Xiao WW, Chen CH, Zhu YH, Wang HJ (2010) Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 5:79

    Article  PubMed  CAS  Google Scholar 

  • McCall MN, Kent OA, Yu J, Fox-Talbot K, Zaiman AL, Halushka MK (2011) MicroRNA profiling of diverse endothelial cell types. BMC Med Genomics 4:78

    Article  PubMed  CAS  Google Scholar 

  • Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64

    Article  PubMed  Google Scholar 

  • Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, Kishore R (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101:910–918

    Article  PubMed  CAS  Google Scholar 

  • Rusinov V, Baev V, Minkov IN, Tabler M (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33:W696–W700

    Article  PubMed  CAS  Google Scholar 

  • Samarin J, Wessel J, Cicha I, Kroening S, Warnecke C, Goppelt-Struebe M (2010) FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells. J Biol Chem 285:4328–4336

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52:698–704

    Article  PubMed  CAS  Google Scholar 

  • Staszel T, Zapała B, Polus A, Sadakierska-Chudy A, Kieć-Wilk B, Stępień E, Wybrańska I, Chojnacka M, Dembińska-Kieć A (2011) Role of microRNAs in endothelial cell pathophysiology. Pol Arch Med Wewn 121:361–366

    PubMed  CAS  Google Scholar 

  • Stepanyan Z, Kocharyan A, Behrens M, Koebnick C, Pyrski M, Meyerhof W (2007) Somatostatin, a negative-regulator of central leptin action in the rat hypothalamus. J Neurochem 100:468–478

    Article  PubMed  CAS  Google Scholar 

  • Voellenkle C, Rooij JV, Guffanti A, Brini E, Fasanaro P, Isaia E, Croft L, David M, Capogrossi MC, Moles A, Felsani A, Martelli F (2012) Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA 18:472–484

    Article  PubMed  CAS  Google Scholar 

  • Walter T, Hommell-Fontaine J, Gouysse G, Pourreyron C, Nejjari M, Villaume K, Causeret S, Hervieu V, Poncet G, Roche C, Scoazec JY (2011) Effects of somatostatin and octreotide on the interactions between neoplastic gastroenteropancreatic endocrine cells and endothelial cells: a comparison between in vitro and in vivo properties. Neuroendocrinology 94:200–208

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  PubMed  CAS  Google Scholar 

  • Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28:2719–2732

    Article  PubMed  CAS  Google Scholar 

  • Yoshie M, Miyajima E, Kyo S, Tamura K (2009) Stathmin, a microtubule regulatory protein, is associated with hypoxia-inducible factor-1alpha levels in human endometrial and endothelial cells. Endocrinology 150:2413–2418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant of The International Retinal Research Foundation, Inc. (Birmingham, AL, USA) to MDM. The authors wish to thank Dr. Vincenzo Lionetti for his generous and invaluable contribution in the final stages of this work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Bagnoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dal Monte, M., Landi, D., Martini, D. et al. Antiangiogenic role of miR-361 in human umbilical vein endothelial cells: functional interaction with the peptide somatostatin. Naunyn-Schmiedeberg's Arch Pharmacol 386, 15–27 (2013). https://doi.org/10.1007/s00210-012-0808-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0808-1

Keywords

Navigation