Skip to main content
Log in

Regulation of opioid gene expression in the rat brainstem by 3,4-methylenedioxymethamphetamine (MDMA): role of serotonin and involvement of CREB and ERK cascade

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The amphetamine analogue 3,4-methylendioxymetamphetamine (MDMA, Ecstasy) causes complex adaptations at the molecular and cellular levels altering the activity of different brain neurotransmitters. The present study aims to verify the effects of single and repeated injections of MDMA on dynorphin and nociceptin systems gene regulation in the brainstem, an area rich in neurons containing serotonin. Both acute and chronic (twice a day for 7 days) MDMA (8 mg/kg) induced a marked increase in prodynorphin mRNA levels as well as in cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation, without causing any effect on kappa opioid receptor or nociceptin system (both pronociceptin and its receptor) genes expression, in this brain region. The blockade of 5HT1/5HT2 receptors by methysergide abolished the acute MDMA-induced increase in prodynorphin. Moreover, the concomitant chronic administration of both methysergide and MDMA (7 days) induced a significant increase in all the dynorphin or nociceptin system genes expression and in CREB and ERK phosphorylation. Our data suggest the involvement of dynorphin in the effects evoked by MDMA in the brainstem, possibly via CREB and ERK1/2 cascade activation, since the ERK inhibitor PD98059 prevented the MDMA-induced prodynorphin gene expression, and, acutely, also through the involvement of serotoninergic mechanisms. Chronically, it is also possible to hypothesize a general inhibitor role of serotonin in the effects evoked by MDMA. Moreover, these findings strengthen the hypothesis, already proposed, of a neuroprotective role for both CREB and dynorphin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams JP, Roberson ED, English JD, Selcher JC, Sweatt JD (2000) MAPK regulation of gene expression in the central nervous system. Acta Neurobiol Exp 60:377–394

    CAS  Google Scholar 

  • Adams DH, Hanson GR, Keefe KA (2005) 3,4-Methylenedioxymethamphetamine increases neuropeptide messenger RNA expression in rat striatum. Brain Res Mol Brain Res 133:131–142

    Article  CAS  PubMed  Google Scholar 

  • Aguirre N, Frechilla D, Garcia-Osta A, Lasheras B, Del Rio J (1997) Differential regulation by methylenedioxymethamphetamine of 5-hydroxytryptamine1A receptor density and mRNA expression in rat hippocampus, frontal cortex and brainstem: the role of corticosteroids. J Neurochem 68:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Sharkey J, Kuhar MJ, de Souza EB (1991) Neuroanatomic specificity and time course of alterations in rat brain serotonergic pathways induced by MDMA (3,4-methylenedioxymethamphetamine): assessment using quantitative autoradiography. Synapse 8:249–260

    Article  CAS  PubMed  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532

    Article  CAS  PubMed  Google Scholar 

  • Bilsky EJ, Hubbell CL, Delconte JD, Reid LD (1991) MDMA produces a conditioned place preference and elicits ejaculation in male rats: a modulatory role for the endogenous opioids. Pharmacol Biochem Behav 40:443–447

    Article  CAS  PubMed  Google Scholar 

  • Bonkale WL, Austin MC (2008) 3,4-Methylenedioxymethamphetamine induces differential regulation of tryptophan hydroxylase 2 protein and mRNA levels in the rat dorsal raphe nucleus. Neuroscience 155:270–276

    Article  CAS  PubMed  Google Scholar 

  • Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci 358:805–814

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, Duman RS, Neve RL, Nestler EJ (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  CAS  PubMed  Google Scholar 

  • Carrasco MA, Jaimovich E, Kemmerling U, Hidalgo C (2004) Signal transduction and gene expression regulated by calcium release from internal stores in excitable cells. Biol Res 37:701–712

    Article  PubMed  Google Scholar 

  • Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823

    Article  CAS  PubMed  Google Scholar 

  • Compan V, Scearce-Levie K, Crosson C, Daszuta A, Hen R (2003) Enkephalin contributes to the locomotor stimulating effects of 3,4-methylenedioxy-N-methylamphetamine. Eur J Neurosci 18:383–390

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Karl KA, Colicos MA, Prywes R, Kandel ER (1991) cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc Natl Acad Sci USA 88:5061–5065

    Article  CAS  PubMed  Google Scholar 

  • Daunais JB, Roberts DC, McGinty JF (1993) Cocaine self-administration increases preprodynorphin, but not c-fos, mRNA in rat striatum. NeuroReport 4:543–546

    Article  CAS  PubMed  Google Scholar 

  • Deakin JFW, Green AR (1978) The effects of putative 5-hydroxytryptamine antagonists on the behaviour produced by administration of tranylcypromine and l-tryptophan or tranylcypromine and l-DOPA to rats. Br J Pharmacol 64:201–209

    CAS  PubMed  Google Scholar 

  • Di Benedetto M, D’Addario C, Collins S, Izenwasser S, Candeletti S, Romualdi P (2004) Role of serotonin on cocaine-mediated effects on prodynorphin gene expression in the rat brain. J Mol Neurosci 22:213–222

    Article  PubMed  Google Scholar 

  • Di Benedetto M, D’Addario C, Candeletti S, Romualdi P (2006) Chronic and acute effects of 3,4-methylenedioxy-N-methylamphetamine (“Ecstasy”) administration on the dynorphinergic system in the rat brain. Neuroscience 137:187–196

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • García-Osta A, Del Río J, Frechilla D (2004) Increased CRE-binding activity and tryptophan hydroxylase mRNA expression induced by 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) in the rat frontal cortex but not in the hippocampus. Brain Res Mol Brain Res 126:181–187

    Article  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Gudelsky GA, Nash JF (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem 66:243–249

    Article  CAS  PubMed  Google Scholar 

  • Gyenge M, Hantos M, Laufer R, Tekes K (2006) Effect of nociceptin on histamine and serotonin release in the central nervous system. Acta Pharm Hung 76:127–132

    PubMed  Google Scholar 

  • Hurd YL, Brown E, Finlay JM, Fibiger HC, Gerfen CR (1992) Cocaine self-administration differentially alters mRNA expression of striatal peptides. Mol Brain Res 13:165–170

    Article  CAS  PubMed  Google Scholar 

  • Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21:869–883

    Article  CAS  PubMed  Google Scholar 

  • Isola R, Zhang H, Tejwani GA, Neff NH, Hadjiconstantinou M (2008) Dynorphin and prodynorphin mRNA changes in the striatum during nicotine withdrawal. Synapse 62:448–455

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Bush LG, Gibb JW, Hanson GR (1991) Blockade of the 3,4-methylenedioxymethamphetamine-induced changes in neurotensin and dynorphin A systems. Eur J Pharmacol 193:367–370

    Article  CAS  PubMed  Google Scholar 

  • Kao TK, Ou YC, Liao SL, Chen WY, Wang CC, Chen SY, Chiang AN, Chen CJ (2008) Opioids modulate post-ischemic progression in a rat model of stroke. Neurochem Int 52:1256–1265

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Ogawa N, Asanuma M, Hirata H, Tanaka K, Kawada Y, Mori A (1993) Regional changes in neuropeptide levels after 5,7-dihydroxytryptamine-induced serotonin depletion in the rat brain. J Neural Transm Gen Sect 92:151–157

    Article  CAS  PubMed  Google Scholar 

  • Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634

    CAS  PubMed  Google Scholar 

  • Kotlinska J, Rafalski P, Biala G, Dylag T, Rolka K, Silberring J (2003) Nociceptin inhibits acquisition of amphetamine-induced place preference and sensitization to stereotypy in rats. Eur J Pharmacol 474:233–239

    Article  CAS  PubMed  Google Scholar 

  • Lane-Ladd SB, Pineda J, Boundy VA, Pfeuffer T, Krupinski J, Aghajanian GK, Nestler EJ (1997) CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J Neurosci 17:7890–7901

    CAS  PubMed  Google Scholar 

  • Liu B, Qin L, Yang SN, Wilson BC, Liu Y, Hong JS (2001) Femtomolar concentrations of dynorphins protect rat mesencephalic dopaminergic neurons against inflammatory damage. J Pharmacol Exp Ther 298:1133–1141

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lucas JJ, Mellström B, Colado MI, Naranjo JR (1993) Molecular mechanisms of pain: serotonin1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron 10:599–611

    Article  CAS  PubMed  Google Scholar 

  • Lyon E, Millson A, Lowery MC, Woods R, Wittwer CT (2001) Quantification of HER2/neu gene amplification by competitive PCR using fluorescent melting curve analysis. Clin Chem 47:844–851

    CAS  PubMed  Google Scholar 

  • Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z, Storm D, Yanagihara T, Hori M, Matsumoto M (2001) Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 21:9204–9213

    CAS  PubMed  Google Scholar 

  • Marinelli PW, Lam M, Bai L, Quirion R, Gianoulakis C (2006) A microdialysis profile of dynorphin A(1-8) release in the rat nucleus accumbens following alcohol administration. Alcohol Clin Exp Res 30:982–990

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Turrillas R, Moyano S, Del Río J, Frechilla D (2006) Differential effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on BDNF mRNA expression in rat frontal cortex and hippocampus. Neurosci Lett 402: 126–130

    Article  PubMed  Google Scholar 

  • Mathieu-Kia AM, Besson MJ (1998) Repeated administration of cocaine, nicotine and ethanol: effects on preprodynorphin, preprotachykinin A and preproenkephalin mRNA expression in the dorsal and the ventral striatum of the rat. Brain Res Mol Brain Res 54:141–151

    Article  CAS  PubMed  Google Scholar 

  • McKenna DJ, Peroutka SJ (1990) Neurochemistry and neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurochem 54:14–22

    Article  CAS  PubMed  Google Scholar 

  • Molliver ME, Berger UV, Mamounas LA, Molliver DC, O’Hearn E, Wilson MA (1990) Neurotoxicity of MDMA and related compounds: anatomic studies. Ann NY Acad Sci 600:649–661, discussion 661–4

    Article  CAS  PubMed  Google Scholar 

  • Morris BJ, Reimer S, Höllt V, Herz A (1988) Regulation of striatal prodynorphin mRNA levels by the raphe-striatal pathway. Brain Res 464:15–22

    CAS  PubMed  Google Scholar 

  • Nazzaro C, Marino S, Barbieri M, Siniscalchi A (2009) Inhibition of serotonin outflow by nociceptin/orphaninFQ in dorsal raphe nucleus slices from normal and stressed rats: Role of corticotropin releasing factor. Neurochem Int 54:378–384

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449

    Article  CAS  PubMed  Google Scholar 

  • Obrietan K, Impey S, Smith D, Athos J, Storm DR (1999) Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 274:17748–17756

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Reid LD, Hubbell CL, Tsai J, Fishkin MD, Amendola CA (1996) Naltrindole, a delta-opioid antagonist, blocks MDMA’s ability to enhance pressing for rewarding brain stimulation. Pharmacol Biochem Behav 53:477–480

    Article  CAS  PubMed  Google Scholar 

  • Reinscheid RK, Higelin J, Henningsen RA, Monsma FJ Jr, Civelli O (1998) Structures that delineate orphanin FQ and dynorphin A pharmacological selectivities. J Biol Chem 273:1490–1495

    Article  CAS  PubMed  Google Scholar 

  • Romualdi P, Donatini A, Izenwasser S, Cox BM, Ferri S (1996) Chronic intracerebroventricular cocaine differentially affects prodynorphin gene expression in rat hypothalamus and caudate-putamen. Brain Res Mol Brain Res 40:153–156

    Article  CAS  PubMed  Google Scholar 

  • Romualdi P, Donatini A, Capobianco A, Ferri S (1999) Methamphetamine alters prodynorphin gene expression and dynorphin A levels in rat hypothalamus. Eur J Pharmacol 365:183–186

    Article  CAS  PubMed  Google Scholar 

  • Romualdi P, D’Addario C, Ferri S, Cox BM, Izenwasser S (2001) Chronic GBR 12909 administration differentially alters prodynorphin gene expression compared to cocaine. Eur J Pharmacol 413:207–212

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger J, Petrovics G, Buzas B (2001) Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB. J Neurochem 79:35–44

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G, Wall SC (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxy-methamphetamine (MDMA)] serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci USA 89:1817–1821

    Article  CAS  PubMed  Google Scholar 

  • Salzmann J, Marie-claire C, Le Guen S, Roques BP, Noble F (2003) Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. Br J Pharmacol 140:831–838

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Taylor V (1988) Direct central effects of acute methylenedioxymethamphetamine on serotonergic neurons. Eur J Pharmacol 156:121–131

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, McGinty JF (1994) Acute amphetamine or methamphetamine alters opioid peptide mRNA expression in rat striatum. Brain Res Mol Brain Res 2:359–362

    Article  Google Scholar 

  • Spangler R, Unterwald EM, Kreek MJ (1993) ‘Binge’ cocaine administration induces a sustained increase of prodynorphin mRNA in rat caudate-putamen. Brain Res Mol Brain Res 19:323–327

    Article  CAS  PubMed  Google Scholar 

  • Stone DM, Merchant KM, Hanson GR, Gibb JW (1987) Immediate and long-term effects of 3,4-methylenedioxymethamphetamine on serotonin pathways in brain of rat. Neuropharmacology 26:1677–1683

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Lou L, Maurer RA (1996) Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV. J Biol Chem 271:3066–3073

    Article  CAS  PubMed  Google Scholar 

  • Sweatt JD (2001) The neuronal MAP Kinase cascade: a biochemical signal integration system subserserving synaptic plasticity and memory. J Neurochem 79:679–688

    Google Scholar 

  • Turchan J, Przewlocka B, Lason W, Przewlocki R (1998) Effects of repeated psychostimulant administration on the prodynorphin system activity and Kappa opioid receptor density in the rat brain. Neuroscience 85:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Turgeon SM, Pollack AE, Fink JS (1997) Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization. Brain Res 749:120–126

    Article  CAS  PubMed  Google Scholar 

  • Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20:8701–8709

    CAS  PubMed  Google Scholar 

  • Valjent E, Pages C, Herve D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patters of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    Article  PubMed  Google Scholar 

  • Werling LL, Frattalia A, Portoghese PS, Takemori AE, Cox BM (1988) Kappa receptor regulation of dopamine release from striatum and cortex of rats and guinea pigs. J Pharmacol Exp Ther 246:282–286

    CAS  PubMed  Google Scholar 

  • Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273:959–963

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto KK, Gonzalez GA, Biggs WH, Montminy MR (1998) Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334:494–498

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the University of Bologna RFO08 (to PR). We wish to thank the National Institute on Drug Abuse/National Institute of Health, USA, for providing MDMA for experimental use (Research Triangle Park).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Di Benedetto.

Additional information

Manuela Di Benedetto and Sussy del Carmen Bastías Candia equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Benedetto, M., Bastías Candia, S., D’Addario, C. et al. Regulation of opioid gene expression in the rat brainstem by 3,4-methylenedioxymethamphetamine (MDMA): role of serotonin and involvement of CREB and ERK cascade. Naunyn-Schmied Arch Pharmacol 383, 169–178 (2011). https://doi.org/10.1007/s00210-010-0587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0587-5

Keywords

Navigation