Skip to main content
Log in

Thaliporphine ameliorates cardiac depression in endotoxemic rats through attenuating TLR4 signaling in the downstream of TAK-1 phosphorylation and NF-κB signaling

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Thaliporphine was found to ameliorate endotoxin-induced circulatory failure and mortality in rodents. The aims of the present study were to assess whether thaliporphine could improve cardiac function in endotoxemic rats and to investigate the underlying mechanisms. Cardiac function was evaluated by pressure–volume loop analysis in pentobarbital-anesthetized rats 24 h after intravenous injection of lipopolysaccharide (LPS) (4 mg/kg) with or without thaliporphine (1 mg/kg, iv). The intracellular Ca2+ transients, nitric oxide (NO), and reactive oxygen species (ROS) in enzymatically isolated ventricular cells were measured by fluorescent indicators. Western blotting was used to analyze the change of protein expression in response to LPS with or without thaliporphine in rat ventricle, H9C2 and Raw264.7 cells. Cardiac depression was found to coincide with the decreased intracellular Ca2+ transients and the increased expression of nitrotyrosine on SERCA2 in rat ventricles after 24-h endotoxemia. Thaliporphine decreased intracellular NO and ROS level in ventricular cells and the nitrosylation of SERCA2, which resulted in recovering the functional properties of intracellular Ca2+ handling and cardiac contraction. In H9C2 cells, LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) could be attenuated by thaliporphine. In Raw264.7 cells, thaliporphine attenuated LPS-induced TAK-1 phosphorylation and IκBα degradation in association with the inhibition of inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-α) expression and the production of NO and ROS. In conclusion, thaliporphine ameliorates LPS-induced cardiac depression through attenuating TLR4 signaling in the downstream of TAK-1 phosphorylation and NF-κB signaling in both cardiomyocytes and macrophage to prevent cardiac SERCA2 from nitrosylation by peroxynitrite via decreasing iNOS and TNF-α expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

TLR-4:

Toll-like receptor 4

iNOS:

Inducible nitric oxide synthase

COX-2:

Cyclooxygenase 2

TNF-α:

Tumor necrosis factor alpha

NCX:

Sodium calcium exchanger

SERCA-2:

Sarcoplasmic reticulum Ca2+-ATPase

PLB:

Phospholamban

CXN43:

Connexin 43

NO:

Nitric oxide

ROS:

Reactive oxygen species

References

  • Adachi T, Matsui R, Xu S, Kirber M, Lazar HL, Sharov VS, Schoneich C, Cohen RA (2002) Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation. Circ Res 90:1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten G, Knuefermann P, Schuhmacher G, Vervolgyi V, von Rappard J, Dreiner U, Fink K, Djoufack C, Hoeft A, Grohe C, Knowlton AA, Meyer R (2006) Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock 25:43–49

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  • Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR (2006) Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72:384–393

    Article  CAS  PubMed  Google Scholar 

  • Cain BS, Meldrum DR, Dinarello CA, Meng X, Joo KS, Banerjee A, Harken AH (1999) Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Crit Care Med 27:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Chen KH, Reece LM, Leary JF (1999) Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction. Free Radic Biol Med 27:100–109

    Article  CAS  PubMed  Google Scholar 

  • Chiao CW, Lee SS, Wu CC, Su MJ (2005) Thaliporphine increases survival rate and attenuates multiple organ injury in LPS-induced endotoxaemia. Naunyn-Schmiedeberg’s Arch Pharmacol 371:34–43

    Article  CAS  Google Scholar 

  • Court O, Kumar A, Parrillo JE (2002) Clinical review: myocardial depression in sepsis and septic shock. Crit Care 6:500–508

    Article  PubMed  Google Scholar 

  • Das UN (2003) Current advances in sepsis and septic shock with particular emphasis on the role of insulin. Med Sci Monit 9:RA181–RA192

    CAS  PubMed  Google Scholar 

  • Davani EY, Boyd JH, Dorscheid DR, Wang Y, Meredith A, Chau E, Singhera GK, Walley KR (2006) Cardiac ICAM-1 mediates leukocyte-dependent decreased ventricular contractility in endotoxemic mice. Cardiovasc Res 72:134–142

    Article  CAS  PubMed  Google Scholar 

  • Digerness SB, Harris KD, Kirklin JW, Urthaler F, Viera L, Beckman JS, Darley-Usmar V (1999) Peroxynitrite irreversibly decreases diastolic and systolic function in cardiac muscle. Free Radic Biol Med 27:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4:444–454

    Article  CAS  PubMed  Google Scholar 

  • Gleeson M, McFarlin B, Flynn M (2006) Exercise and Toll-like receptors. Exerc Immunol Rev 12:34–53

    PubMed  Google Scholar 

  • Guinaudeau H, Leboeuf M, Cave A (1975) Aporphine alkaloids. Lloydia 38:275–338

    CAS  PubMed  Google Scholar 

  • Hicks MJ, Shigekawa M, Katz AM (1979) Mechanism by which cyclic adenosine 3′:5′-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ Res 44:384–391

    CAS  PubMed  Google Scholar 

  • Hove-Madsen L, Bers DM (1993) Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circ Res 73:820–828

    CAS  PubMed  Google Scholar 

  • Jones SB, Romano FD (1990) Myocardial beta adrenergic receptor coupling to adenylate cyclase during developing septic shock. Circ Shock 30:51–61

    CAS  PubMed  Google Scholar 

  • Kameswara Rao NS, Lee SS (2000) Preparation of thaliporphine and lirioferine from glaucine by treatment with hydrogen bromide. J Chin Chem Soc 47:1227–1230

    Google Scholar 

  • Kindt S, Van Oudenhove L, Broekaert D, Kasran A, Ceuppens JL, Bossuyt X, Fischler B, Tack J (2009) Immune dysfunction in patients with functional gastrointestinal disorders. Neurogastroenterol Motil 21:389–398

    Article  CAS  PubMed  Google Scholar 

  • Krunkosky TM, Martin LD, Fischer BM, Voynow JA, Adler KB (2003) Effects of TNFalpha on expression of ICAM-1 in human airway epithelial cells in vitro: oxidant-mediated pathways and transcription factors. Free Radic Biol Med 35:1158–1167

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Haery C, Parrillo JE (2000) Myocardial dysfunction in septic shock. Crit Care Clin 16:251–287

    Article  CAS  PubMed  Google Scholar 

  • Le Peuch CJ, Haiech J, Demaille JG (1979) Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium–calmodulin-dependent phosphorylations. Biochemistry 18:5150–5157

    Article  PubMed  Google Scholar 

  • Levy RJ (2007) Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28:24–28

    Article  CAS  PubMed  Google Scholar 

  • Liaudet L, Soriano FG, Szabo C (2000) Biology of nitric oxide signaling. Crit Care Med 28:N37–N52

    Article  CAS  PubMed  Google Scholar 

  • Lo SK, Janakidevi K, Lai L, Malik AB (1993) Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. Am J Physiol 264:L406–L412

    CAS  PubMed  Google Scholar 

  • Lokuta AJ, Maertz NA, Meethal SV, Potter KT, Kamp TJ, Valdivia HH, Haworth RA (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111:988–995

    Article  CAS  PubMed  Google Scholar 

  • Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM (1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 92:1866–1874

    Article  CAS  PubMed  Google Scholar 

  • Merx MW, Weber C (2007) Sepsis and the heart. Circulation 116:793–802

    Article  CAS  PubMed  Google Scholar 

  • Milanowski DJ, Winter RE, Elvin-Lewis MP, Lewis WH (2002) Geographic distribution of three alkaloid chemotypes of Croton lechleri. J Nat Prod 65:814–819

    Article  CAS  PubMed  Google Scholar 

  • Mitra R, Morad M (1985) A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol 249:H1056–H1060

    CAS  PubMed  Google Scholar 

  • Parratt JR (1998) Nitric oxide in sepsis and endotoxaemia. J Antimicrob Chemother 41(Suppl A):31–39

    Article  CAS  PubMed  Google Scholar 

  • Pathan N, Hemingway CA, Alizadeh AA, Stephens AC, Boldrick JC, Oragui EE, McCabe C, Welch SB, Whitney A, O'Gara P, Nadel S, Relman DA, Harding SE, Levin M (2004) Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 363:203–209

    Article  CAS  PubMed  Google Scholar 

  • Remick DG (2003) Cytokine therapeutics for the treatment of sepsis: why has nothing worked? Curr Pharm Des 9:75–82

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Ren BH, Sharma AC (2002) Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 18:285–288

    Article  PubMed  Google Scholar 

  • Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608

    Article  PubMed  Google Scholar 

  • Salinas J, Fica A (2005) Immunoglobulins in sepsis and septic shock. Rev Chil Infectol 22:21–31

    Google Scholar 

  • Schmidt T, Zaib F, Samson SE, Kwan CY, Grover AK (2004) Peroxynitrite resistance of sarco/endoplasmic reticulum Ca2+ pump in pig coronary artery endothelium and smooth muscle. Cell Calcium 36:77–82

    Article  CAS  PubMed  Google Scholar 

  • Sharma AC (2007) Sepsis-induced myocardial dysfunction. Shock 28:265–269

    Article  CAS  PubMed  Google Scholar 

  • Stade BG, Messer G, Riethmuller G, Johnson JP (1990) Structural characteristics of the 5′ region of the human ICAM-1 gene. Immunobiology 182:79–87

    CAS  PubMed  Google Scholar 

  • Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423

    Article  CAS  PubMed  Google Scholar 

  • Tavener SA, Kubes P (2006) Cellular and molecular mechanisms underlying LPS-associated myocyte impairment. Am J Physiol Heart Circ Physiol 290:H800–H806

    Article  CAS  PubMed  Google Scholar 

  • Tavener SA, Long EM, Robbins SM, McRae KM, Van Remmen H, Kubes P (2004) Immune cell Toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res 95:700–707

    Article  CAS  PubMed  Google Scholar 

  • Voraberger G, Schafer R, Stratowa C (1991) Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5′-regulatory region. Induction by cytokines and phorbol ester. J Immunol 147:2777–2786

    CAS  PubMed  Google Scholar 

  • Werdan K, Muller U, Reithmann C, Pfeifer A, Hallstrom S, Koidl B, Schlag G (1991) Mechanisms in acute septic cardiomyopathy: evidence from isolated myocytes. Basic Res Cardiol 86:411–421

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Ying J, Jiang B, Guo W, Adachi T, Sharov V, Lazar H, Menzoian J, Knyushko TV, Bigelow D, Schoneich C, Cohen RA (2006) Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 290:H2220–H2227

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Bernecker OY, Manohar NS, Hajjar RJ, Hellman J, Ichinose F, Valdivia HH, Schmidt U (2005) Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 33:598–604

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Council (NSC 95-2323-B-002-013), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jai Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WP., Tzeng, HJ., Ku, HC. et al. Thaliporphine ameliorates cardiac depression in endotoxemic rats through attenuating TLR4 signaling in the downstream of TAK-1 phosphorylation and NF-κB signaling. Naunyn-Schmied Arch Pharmacol 382, 441–453 (2010). https://doi.org/10.1007/s00210-010-0562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0562-1

Keywords

Navigation