Skip to main content

Advertisement

Log in

Novel pharmacological approaches for antiarrhythmic therapy

  • EDITORIAL
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Arrhythmias are caused by the perturbation of physiological impulse formation, impaired conduction, or disturbed electrical recovery. Currently available antiarrhythmic drugs—perhaps with exception of amiodarone—are not sufficiently effective and are burdened by cardiac and extracardiac side effects that may offset their therapeutic benefits. Detailed knowledge about electrical and structural remodelling may provide a better understanding of the mechanisms leading to generation and maintenance of arrhythmias especially in the setting of underlying heart disease and accompanying autonomic dysfunction. Thus, targets for new pharmacological interventions could include atrial-selective ion channels (e.g. atrial INa, IKur and IK,ACh), pathology-selective ion channels (constitutively active IK,ACh, TRP channels), ischemia-uncoupled gap junctions, proteins related to malfunctioning intracellular Ca2+ homeostasis (e.g. “leaky” ryanodine receptors, overactive Na+,Ca2+ exchanger) or risk factors for arrhythmias (“upstream” therapies). In ventricular arrhythmias implantable cardioverter-defibrillator devices rather than antiarrhythmic drugs are the safest treatment option. The domain for new approaches to drug treatment is atrial fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  • Antzelevitch C, Burashnikov A (2009) Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation. J Electrocardiol 42:543–548

    Article  PubMed  Google Scholar 

  • Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M (1997) Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96:3157–3163

    PubMed  CAS  Google Scholar 

  • Bentzen BH, Andersen RW, Olesen SP, Grunnet M, Nardi A (2009) Synthesis and characterisation of NS13558: a new important tool for addressing KCa1.1 channel function ex vivo. Naunyn Schmiedebergs Arch Pharmacol. doi:10.1007/s00210-009-0456-2

    PubMed  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100:315–322

    Article  PubMed  CAS  Google Scholar 

  • Bettoni M, Zimmermann M (2002) Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105:2753–2759

    Article  PubMed  Google Scholar 

  • Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409:35–36

    Article  PubMed  CAS  Google Scholar 

  • Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C (2007) Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation 116:1449–1457

    Article  PubMed  CAS  Google Scholar 

  • Cha TJ, Ehrlich JR, Chartier D, Qi XY, Xiao L, Nattel S (2006) Kir3-based inward rectifier potassium current: potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation 113:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Christ T, Ravens U (2005) Do we need new antiarrhythmic compounds in the era of implantable cardiac devices and percutaneous ablation? Cardiovasc Res 68:341–343

    Article  PubMed  CAS  Google Scholar 

  • Christ T, Wettwer E, Voigt N, Hala O, Radicke S, Matschke K, Varro A, Dobrev D, Ravens U (2008) Pathology-specific effects of the I(Kur)/I(to)/I(K, ACh) blocker AVE0118 on ion channels in human chronic atrial fibrillation. Br J Pharmacol 154:1619–1630

    Article  PubMed  CAS  Google Scholar 

  • Clarke TC, Thomas D, Petersen JS, Evans WH, Martin PE (2006) The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43. Br J Pharmacol 147:486–495

    Article  PubMed  CAS  Google Scholar 

  • Dhein S, Hagen A, Jozwiak J, Dietze A, Garbade J, Barten M, Kostelka M, Mohr FW (2009) Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides. Naunyn Schmiedebergs Arch Pharmacol. doi:10.1007/s00210-009-0473-1

    Google Scholar 

  • Dobrev D (2009) Atrial Ca(2+) signaling in atrial fibrillation as an antiarrhythmic drug target. Naunyn Schmiedebergs Arch Pharmacol. doi:10.1007/s00210-009-0457-1

    Google Scholar 

  • Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens U (2005) The G protein-gated potassium current I(K, ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706

    Article  PubMed  CAS  Google Scholar 

  • Dobrev D, Nattel S (2008) Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol 52:293–299

    Article  PubMed  CAS  Google Scholar 

  • Dobrev D, Ravens U (2003) Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol 98:137–148

    PubMed  Google Scholar 

  • Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45:38–54

    Article  PubMed  CAS  Google Scholar 

  • Easton JA, Petersen JS, Martin PE (2009) The anti-arrhythmic peptide AAP10 remodels Cx43 and Cx40 expression and function. Naunyn Schmiedebergs Arch Pharmacol 380:11–24

    Article  PubMed  CAS  Google Scholar 

  • Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324:781–788

    PubMed  CAS  Google Scholar 

  • Ford JW, Milnes JT (2008) New drugs targeting the cardiac ultra-rapid delayed-rectifier current (I Kur): rationale, pharmacology and evidence for potential therapeutic value. J Cardiovasc Pharmacol 52:105–120

    Article  PubMed  CAS  Google Scholar 

  • Gierten J, Ficker E, Bloehs R, Schlomer K, Kathofer S, Scholz E, Zitron E, Kiesecker C, Bauer A, Becker R, Katus HA, Karle CA, Thomas D (2008) Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 154:1680–1690

    Article  PubMed  CAS  Google Scholar 

  • Gierten J, Ficker E, Bloehs R, Schweizer PA, Zitron E, Scholz E, Karle C, Katus HA, Thomas D (2009) The human cardiac K(2P)3.1 (TASK-1) potassium leak channel is a molecular target for the class III antiarrhythmic drug amiodarone. Naunyn Schmiedebergs Arch Pharmacol (in press)

  • Goette A, Lendeckel U (2004) Nonchannel drug targets in atrial fibrillation. Pharmacol Ther 102:17–36

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  PubMed  CAS  Google Scholar 

  • Guillemare E, Marion A, Nisato D, Gautier P (2000) Inhibitory effects of dronedarone on muscarinic K+ current in guinea pig atrial cells. J Cardiovasc Pharmacol 36:802–805

    Article  PubMed  CAS  Google Scholar 

  • Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75–83

    Article  PubMed  CAS  Google Scholar 

  • Guinamard R, Demion M, Chatelier A, Bois P (2006) Calcium-activated nonselective cation channels in mammalian cardiomyocytes. Trends Cardiovasc Med 16:245–250

    Article  PubMed  CAS  Google Scholar 

  • Jalife J (2000) Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol 62:25–50

    Article  PubMed  CAS  Google Scholar 

  • Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208–217

    Article  PubMed  CAS  Google Scholar 

  • Jordaens L, Tavernier R, Gorgov N, Kindt H, Dimmer C, Clement DL (1998) Signal-averaged P wave: predictor of atrial fibrillation. J Cardiovasc Electrophysiol 9:S30–S34

    PubMed  CAS  Google Scholar 

  • Jozwiak J, Dhein S (2008) Local effects and mechanisms of antiarrhythmic peptide AAP10 in acute regional myocardial ischemia: electrophysiological and molecular findings. Naunyn Schmiedebergs Arch Pharmacol 378:459–470

    Article  PubMed  CAS  Google Scholar 

  • Kaab S, Dixon J, Duc J, Ashen D, Nabauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393

    PubMed  CAS  Google Scholar 

  • Kaufmann R, Theophile U (1967) Autonomously promoted extension effect in Purkinje fibers, papillary muscles and trabeculae carneae of rhesus monkeys. Pflugers Arch Gesamte Physiol Menschen Tiere 297:174–189

    Article  PubMed  CAS  Google Scholar 

  • Koster OF, Szigeti GP, Beuckelmann DJ (1999) Characterization of a [Ca2+]i-dependent current in human atrial and ventricular cardiomyocytes in the absence of Na+ and K+. Cardiovasc Res 41:175–187

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski D, Budrejko S, Lip GY, Mikhailidis DP, Rysz J, Raczak G, Banach M (2009) Vernakalant hydrochloride for the treatment of atrial fibrillation. Expert Opin Investig Drugs 18:1929–1937

    Article  PubMed  CAS  Google Scholar 

  • Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21:69–78

    CAS  Google Scholar 

  • Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100:87–95

    PubMed  CAS  Google Scholar 

  • Li N, Timofeyev V, Tuteja D, Xu D, Lu L, Zhang Q, Zhang Z, Singapuri A, Albert TR, Rajagopal AV, Bond CT, Periasamy M, Adelman J, Chiamvimonvat N (2009) Ablation of a Ca2+ -activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 587:1087–1100

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Nattel S (1997) Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol 273:H805–H816

    PubMed  CAS  Google Scholar 

  • Maltsev VA, Sabbah HN, Undrovinas AI (2001) Late sodium current is a novel target for amiodarone: studies in failing human myocardium. J Mol Cell Cardiol 33:923–932

    Article  PubMed  CAS  Google Scholar 

  • Miake J, Marban E, Nuss HB (2002) Biological pacemaker created by gene transfer. Nature 419:132–133

    Article  PubMed  CAS  Google Scholar 

  • Miake J, Marban E, Nuss HB (2003) Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 111:1529–1536

    PubMed  CAS  Google Scholar 

  • Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  PubMed  CAS  Google Scholar 

  • Nattel S (2009) Calcium-activated potassium current: a novel ion channel candidate in atrial fibrillation. J Physiol 587:1385–1386

    Article  PubMed  CAS  Google Scholar 

  • Nattel S, Burstein B, Dobrev D (2008) Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1:62–73

    Article  PubMed  Google Scholar 

  • Nishida M, Kurose H (2008) Roles of TRP channels in the development of cardiac hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 378:395–406

    Article  PubMed  CAS  Google Scholar 

  • Olson TM, Alekseev AE, Liu XK, Park S, Zingman LV, Bienengraeber M, Sattiraju S, Ballew JD, Jahangir A, Terzic A (2006) Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 15:2185–2191

    Article  PubMed  CAS  Google Scholar 

  • Ozgen N, Dun W, Sosunov EA, Anyukhovsky EP, Hirose M, Duffy HS, Boyden PA, Rosen MR (2007) Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc Res 75:758–769

    Article  PubMed  CAS  Google Scholar 

  • Pandit SV, Berenfeld O, Anumonwo JM, Zaritski RM, Kneller J, Nattel S, Jalife J (2005) Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J 88:3806–3821

    Article  PubMed  CAS  Google Scholar 

  • Patel C, Yan GX, Kowey PR (2009) Dronedarone. Circulation 120:636–644

    Article  PubMed  CAS  Google Scholar 

  • Putzke C, Wemhoner K, Sachse FB, Rinne S, Schlichthorl G, Li XT, Jae L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Muller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75:59–68

    Article  PubMed  CAS  Google Scholar 

  • Ravens U, Cerbai E (2008) Role of potassium currents in cardiac arrhythmias. Europace 10:1133–1137

    Article  PubMed  Google Scholar 

  • Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  PubMed  CAS  Google Scholar 

  • Savelieva I, Camm J (2007) Is there any hope for angiotensin-converting enzyme inhibitors in atrial fibrillation? Am Heart J 154:403–406

    Article  PubMed  CAS  Google Scholar 

  • Savelieva I, Camm J (2008) Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches. Europace 10:647–665

    Article  PubMed  Google Scholar 

  • Savelieva I, Kourliouros A, Camm J (2009) Primary and secondary prevention of atrial fibrillation with statins and polyunsaturated fatty acids: review of evidence and clinical relevance. Naunyn Schmiedebergs Arch Pharmacol (in press)

  • Seebohm G (2005) Activators of cation channels: potential in treatment of channelopathies. Mol Pharmacol 67:585–588

    Article  PubMed  CAS  Google Scholar 

  • Shiroshita-Takeshita A, Sakabe M, Haugan K, Hennan JK, Nattel S (2007) Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation 115:310–318

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli GF, Beuckelmann DJ, Calkins HG, Berger RD, Kessler PD, Lawrence JH, Kass D, Feldman AM, Marban E (1994) Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 90:2534–2539

    PubMed  CAS  Google Scholar 

  • Tsang TS, Miyasaka Y, Barnes ME, Gersh BJ (2005) Epidemiological profile of atrial fibrillation: a contemporary perspective. Prog Cardiovasc Dis 48:1–8

    Article  PubMed  Google Scholar 

  • Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN (2006) Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 17(Suppl 1):S169–S177

    Article  PubMed  Google Scholar 

  • Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38:475–483

    Google Scholar 

  • Van Wagoner DR, Voigt N, Bunnell B, Barnard J, Schotten U, Nattel S, Ravens U, Dobrev D (2009) Transient receptor potential canonical (TRPC) channel subunit remodeling in clinical and experimental AF. Heart Rhythm AbstractPO06-77

  • Vaquero M, Calvo D, Jalife J (2008) Cardiac fibrillation: from ion channels to rotors in the human heart. Heart Rhythm 5:872–879

    Article  PubMed  Google Scholar 

  • Vassort G, Alvarez J (2009) Transient receptor potential: a large family of new channels of which several are involved in cardiac arrhythmia. Can J Physiol Pharmacol 87:100–107

    Article  PubMed  CAS  Google Scholar 

  • Vest JA, Wehrens XH, Reiken SR, Lehnart SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR, Marks AR (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111:2025–2032

    Article  PubMed  CAS  Google Scholar 

  • Voigt N, Friedrich A, Bock M, Wettwer E, Christ T, Knaut M, Strasser RH, Ravens U, Dobrev D (2007) Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK, ACh channels in patients with chronic atrial fibrillation. Cardiovasc Res 74:426–437

    Article  PubMed  CAS  Google Scholar 

  • Voigt N, Rozmaritsa N, Trausch A, Zimniak T, Christ T, Wettwer E, Matschke K, Dobrev D, Ravens U (2009) Inhibition of I(K, ACh) current may contribute to clinical efficacy of class I and class III antiarrhythmic drugs in patients with atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol. doi:10.1007/s00210-009-0452-6

    PubMed  Google Scholar 

  • Watanabe H, Murakami M, Ohba T, Ono K, Ito H (2009) The pathological role of transient receptor potential channels in heart disease. Circ J 73:419–427

    Article  PubMed  CAS  Google Scholar 

  • Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968

    PubMed  CAS  Google Scholar 

  • Workman AJ (2009) Cardiac adrenergic control and atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol. doi:10.1007/s00210-009-0474-0

    PubMed  Google Scholar 

  • Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, Kellen JC, Greene HL, Mickel MC, Dalquist JE, Corley SD (2002) A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O'Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN, Glatter KA, Vazquez AE, Yamoah EN, Chiamvimonvat N (2003) Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J Biol Chem 278:49085–49094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dobromir Dobrev and Niels Voigt for critical reading of the manuscript and helpful suggestions. The author receives financial support from Fondation Leducq (07 CVD 03, “Leducq European-North American Atrial Fibrillation Research Alliance”) and the German Federal Ministry of Education and Research (Atrial Fibrillation Competence Network, member of the steering committee; New Antiarrhythmic Drugs, Research project 03FPB00226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Ravens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravens, U. Novel pharmacological approaches for antiarrhythmic therapy. Naunyn-Schmied Arch Pharmacol 381, 187–193 (2010). https://doi.org/10.1007/s00210-009-0487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0487-8

Keywords

Navigation