Skip to main content

Advertisement

Log in

Cardiac adrenergic control and atrial fibrillation

  • REVIEW
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and it causes substantial mortality. The autonomic nervous system, and particularly the adrenergic/cholinergic balance, has a profound influence on the occurrence of AF. Adrenergic stimulation from catecholamines can cause AF in patients. In human atrium, catecholamines can affect each of the electrophysiological mechanisms of AF initiation and/or maintenance. Catecholamines may produce membrane potential oscillations characteristic of afterdepolarisations, by increasing Ca2+ current, [Ca2+]i and consequent Na+–Ca2+ exchange, and may also enhance automaticity. Catecholamines might affect reentry, by altering excitability or conduction, rather than action potential terminal repolarisation or refractory period. However, which arrhythmia mechanisms predominate is unclear, and likely depends on cardiac pathology and adrenergic tone. Heart failure (HF), a major cause of AF, causes adrenergic activation and adaptational changes, remodelling, of atrial electrophysiology, Ca2+ homeostasis, and adrenergic responses. Chronic AF also remodels these, but differently to HF. Myocardial infarction and AF cause neural remodelling that also may promote AF. β-Adrenoceptor antagonists (β-blockers) are used in the treatment of AF, mainly to control the ventricular rate, by slowing atrioventricular conduction. β-Blockers also reduce the incidence of AF, particularly in HF or after cardiac surgery, when adrenergic tone is high. Furthermore, the chronic treatment of patients with β-blockers remodels the atria, with a potentially antiarrhythmic increase in the refractory period. Therefore, the suppression of AF by β-blocker treatment may involve an attenuation of arrhythmic activity that is caused by increased [Ca2+]i, coupled with effects of adaptation to the treatment. An improved understanding of the involvement of the adrenergic system and its control in basic mechanisms of AF under differing cardiac pathologies might lead to better treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arora R, Verheule S, Scott L et al (2003) Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 107:1816–1821

    PubMed  Google Scholar 

  • Barbuti A, Terragni B, Brioschi C et al (2007) Localization of f-channels to caveolae mediates specific β2-adrenergic receptor modulation of rate in sinoatrial myocytes. J Mol Cell Cardiol 42:71–78

    PubMed  CAS  Google Scholar 

  • Bartholomeu JB, Vanzelli AS, Rolim NPL et al (2008) Intracellular mechanisms of specific beta-adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure. J Mol Cell Cardiol 45:240–249

    PubMed  CAS  Google Scholar 

  • Berglund H, Boukter S, Theodorsson E et al (1990) Raised plasma concentrations of atrial natriuretic peptide are independent of left atrial dimensions in patients with chronic atrial fibrillation. Br Heart J 64:9–13

    PubMed  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    PubMed  CAS  Google Scholar 

  • Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    PubMed  CAS  Google Scholar 

  • Bettoni M, Zimmermann M (2002) Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105:2753–2759

    PubMed  Google Scholar 

  • Bolger AP, Sharma R, Li W et al (2002) Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation 106:92–99

    PubMed  CAS  Google Scholar 

  • Bosch RF, Zeng X, Grammer JB et al (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44:121–131

    PubMed  CAS  Google Scholar 

  • Bosch RF, Schneck AC, Kiehn J et al (2002) β3-adrenergic regulation of an ion channel in the heart-inhibition of the slow delayed rectifier potassium current IKs in guinea pig ventricular myocytes. Cardiovasc Res 56:393–403

    PubMed  CAS  Google Scholar 

  • Brown L, Sernia C, Newling R et al (1992) Cardiac responses after norepinephrine-induced ventricular hypertrophy in rats. J Cardiovasc Pharmacol 20:316–323

    PubMed  CAS  Google Scholar 

  • Cao F, Huang CX, Wang T et al (2006) Effects of carvedilol on rabbit atrial cell electrophysiology. Heart Rhythm 3(Suppl 1):S178 Abstract

    Google Scholar 

  • Cha TJ, Ehrlich JR, Zhang L et al (2005) Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation 111:728–735

    PubMed  Google Scholar 

  • Chamberlain PD, Jennings KH, Paul F et al (1999) The tissue distribution of the human β3-adrenoceptor studied using a monoclonal antibody: direct evidence of the β3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obesity 23:1057–1065

    CAS  Google Scholar 

  • Chang CM, Wu TJ, Zhou S et al (2001) Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation 103:22–25

    PubMed  CAS  Google Scholar 

  • Chen YJ, Chen SA, Chang MS et al (2000) Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc Res 48:265–273

    PubMed  CAS  Google Scholar 

  • Chen YJ, Chen SA, Chen YC et al (2002) Electrophysiology of single cardiomyocytes isolated from rabbit pulmonary veins: implication in initiation of focal atrial fibrillation. Basic Res Cardiol 97:26–34

    PubMed  Google Scholar 

  • Cheng HJ, Zhang ZS, Onishi K et al (2001) Upregulation of functional β3-adrenergic receptor in the failing canine myocardium. Circ Res 89:599–606

    PubMed  CAS  Google Scholar 

  • Chou CC, Nihei M, Zhou S et al (2005) Intracellular calcium dynamics and anisotropic reentry in isolated canine pulmonary veins and left atrium. Circulation 111:2889–2897

    PubMed  CAS  Google Scholar 

  • Christ T, Boknik P, Wohrl S et al (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110:2651–2657

    PubMed  CAS  Google Scholar 

  • Coccagna G, Capucci A, Bauleo S et al (1997) Paroxysmal atrial fibrillation in sleep. Sleep 20:396–398

    PubMed  CAS  Google Scholar 

  • Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275:H301–H321

    PubMed  CAS  Google Scholar 

  • Coutu P, Chartier D, Nattel S (2006) Comparison of Ca2+-handling properties of canine pulmonary vein and left atrial cardiomyocytes. Am J Physiol 291:H2290–H2300

    CAS  Google Scholar 

  • Curran J, Hinton MJ, Rios E et al (2007) β-Adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100:391–398

    PubMed  CAS  Google Scholar 

  • Danson EJF, Zhang YH, Sears CE et al (2005) Disruption of inhibitory G-proteins mediates a reduction in atrial β-adrenergic signaling by enhancing eNOS expression. Cardiovasc Res 67:613–623

    PubMed  CAS  Google Scholar 

  • Davis LD (1975) Effects of autonomic neurohumors on transmembrane potentials of atrial plateau fibers. Am J Physiol 229:1351–1356

    PubMed  CAS  Google Scholar 

  • Deng C, Yu X, Kuang S et al (2007) Effects of carvedilol on transient outward and ultra-rapid delayed rectifier potassium currents in human atrial myocytes. Life Sci 80:665–671

    PubMed  CAS  Google Scholar 

  • Dimmer C, Tavernier R, Gjorgov N et al (1998) Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting. Am J Cardiol 82:22–25

    PubMed  CAS  Google Scholar 

  • Dinanian S, Boixel C, Juin C et al (2008) Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation. Eur Heart J 29:1190–1197

    PubMed  Google Scholar 

  • Dobrev D, Nattel S (2008) Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol 52:293–299

    PubMed  CAS  Google Scholar 

  • Eckel L, Gristwood RW, Nawrath H et al (1982) Inotropic and electrophysiological effects of histamine on human ventricular heart muscle. J Physiol 330:111–123

    PubMed  CAS  Google Scholar 

  • Ehrlich JR, Nattel S (2009) Novel approaches for pharmacological management of atrial fibrillation. Drugs 69:757–774

    PubMed  CAS  Google Scholar 

  • Eisner DA, Kashimura T, O'Neill SC et al (2009) What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis? J Mol Cell Cardiol 46:474–481

    PubMed  CAS  Google Scholar 

  • Engelman RM, Haag B, Lemeshow S et al (1983) Mechanism of plasma catecholamine increases during coronary artery bypass and valve procedures. J Thorac Cardiovasc Surg 86:608–615

    PubMed  CAS  Google Scholar 

  • Fuster V, Ryden LE, Cannom DS et al (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. Executive summary. J Am Coll Cardiol 48:854–906

    PubMed  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F et al (1996) Functional β3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    PubMed  CAS  Google Scholar 

  • Gelband H, Rosen MR, Myerburg RJ et al (1977) Restorative effect of epinephrine on the electrophysiologic properties of depressed human atrial tissue. J Electrocardiol 10:313–320

    PubMed  CAS  Google Scholar 

  • Gould PA, Yii M, McLean C et al (2006) Evidence for increased atrial sympathetic innervation in persistent human atrial fibrillation. PACE-Pacing Clin Electrophysiol 29:821–829

    PubMed  Google Scholar 

  • Grammer JB, Zeng X, Bosch RF et al (2001) Atrial L-type Ca2+-channel, β-adrenoreceptor, and 5-hydroxytryptamine type 4 receptor mRNAs in human atrial fibrillation. Basic Res Cardiol 96:82–90

    PubMed  CAS  Google Scholar 

  • Greiser M, Halaszovich CR, Frechen D et al (2007) Pharmacological evidence for altered src kinase regulation of ICa, L in patients with chronic atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 375:383–392

    PubMed  CAS  Google Scholar 

  • Haghjoo M, Saravi M, Hashemi MJ et al (2007) Optimal β-blocker for prevention of atrial fibrillation after on-pump coronary artery bypass graft surgery: carvedilol versus metoprolol. Heart Rhythm 4:1170–1174

    PubMed  Google Scholar 

  • Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    PubMed  CAS  Google Scholar 

  • Harding SE, Jones SM, O'Gara P et al (1990) Reduced β-agonist sensitivity in single atrial cells from failing human hearts. Am J Physiol 259:H1009–H1014

    PubMed  CAS  Google Scholar 

  • Hatem SN, Sweeten T, Vetter V et al (1995) Evidence for presence of Ca2+ channel-gated Ca2+ stores in neonatal human atrial myocytes. Am J Physiol 268:H1195–H1201

    PubMed  CAS  Google Scholar 

  • Heath BM, Terrar DA (2000) Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in C-type inactivation in guinea-pig ventricular myocytes. J Physiol 522:391–402

    PubMed  CAS  Google Scholar 

  • Hedberg A, Kempf F Jr, Josephson ME et al (1985) Coexistence of Beta-1 and Beta-2 adrenergic receptors in the human heart: effects of treatment with receptor antagonists or calcium entry blockers. J Pharmacol Exp Ther 234:561–568

    PubMed  CAS  Google Scholar 

  • Hoppe UC, Beuckelmann DJ (1998) Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes. Cardiovasc Res 38:788–801

    PubMed  CAS  Google Scholar 

  • Hove-Madsen L, Llach A, Bayes-Genis A et al (2004) Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 110:1358–1363

    PubMed  CAS  Google Scholar 

  • Jahnel U, Nawrath H, Shieh RC et al (1992) Modulation of cytosolic free calcium concentration by α1-adrenoceptors in rat atrial cells. Naunyn Schmiedebergs Arch Pharmacol 346:88–93

    PubMed  CAS  Google Scholar 

  • Jayachandran JV, Sih HJ, Winkle W et al (2000) Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation 101:1185–1191

    PubMed  CAS  Google Scholar 

  • Johnson N, Danilo P Jr, Wit AL et al (1986) Characteristics of initiation and termination of catecholamine-induced triggered activity in atrial fibers of the coronary sinus. Circulation 74:1168–1179

    PubMed  CAS  Google Scholar 

  • Jost N, Virag L, Bitay M et al (2005) Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation 112:1392–1399

    PubMed  Google Scholar 

  • Katritsis DG (2008) Catheter ablation of atrial fibrillation: for whom and how? Angiology 59:103S–106S

    PubMed  Google Scholar 

  • Kaumann AJ, Sanders L (1993) Both β1- and β2-adrenoceptors mediate catecholamine-evoked arrhythmias in isolated human right atrium. Naunyn Schmiedebergs Arch Pharmacol 348:536–540

    PubMed  CAS  Google Scholar 

  • Kawashima T (2005) The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol 209:425–438

    PubMed  Google Scholar 

  • Kecskemeti V, Kelemen K, Solti F et al (1985) Physiological and pharmacological analysis of transmembrane action potentials of human atrial fibers. Adv Myocardiol 6:37–47

    PubMed  CAS  Google Scholar 

  • Kiss O, Zima E, Soos P et al (2004) Intracoronary endothelin-1 infusion combined with systemic isoproterenol treatment: antagonistic arrhythmogenic effects. Life Sci 75:537–548

    PubMed  CAS  Google Scholar 

  • Klein G, Schroder F, Vogler D et al (2003) Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation: role of phosphatase 2A. Cardiovasc Res 59:37–45

    PubMed  CAS  Google Scholar 

  • Kojodjojo P, Peters NS, Davies DW et al (2007) Characterization of the electroanatomical substrate in human atrial fibrillation: the relationship between changes in atrial volume, refractoriness, wavefront propagation velocities, and AF burden. J Cardiovasc Electrophysiol 18:269–275

    PubMed  Google Scholar 

  • Koumi S, Backer CL, Arentzen CE et al (1995) β-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to β-adrenergic stimulation in failing human hearts. J Clin Invest 96:2870–2881

    PubMed  CAS  Google Scholar 

  • Kuhlkamp V, Schirdewan A, Stangl K et al (2000) Use of metoprolol CR/XL to maintain sinus rhythm after conversion from persistent atrial fibrillation: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 36:139–146

    PubMed  CAS  Google Scholar 

  • Lee HC, Matsuda JJ, Lemmer JH et al (1990) Regulation of sodium currents by β-adrenergic stimulation in isolated cardiac myocytes from rabbit and human. J Mol Cell Cardiol 22(Suppl I):S14 Abstract

    Google Scholar 

  • Lehnart SE, Wehrens XHT, Marks AR (2004) Calstabin deficiency, ryanodine receptors, and sudden cardiac death. Biochem Biophys Res Commun 322:1267–1279

    PubMed  CAS  Google Scholar 

  • Lei M, Brown HF, Terrar DA (2000) Modulation of delayed rectifier potassium current, i K, by isoprenaline in rabbit isolated pacemaker cells. Exp Physiol 85:27–35

    PubMed  CAS  Google Scholar 

  • Levi R, Malm JR, Bowman FO et al (1981) The arrhythmogenic actions of histamine on human atrial fibers. Circ Res 49:545–550

    PubMed  CAS  Google Scholar 

  • Li GR, Nattel S (1997) Properties of human atrial ICa at physiological temperatures and relevance to action potential. Am J Physiol 272:H227–H235

    PubMed  CAS  Google Scholar 

  • Li GR, Feng J, Wang Z et al (1996) Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circ Res 78:903–915

    PubMed  CAS  Google Scholar 

  • Li D, Melnyk P, Feng J et al (2000) Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation 101:2631–2638

    PubMed  CAS  Google Scholar 

  • Liang BT, Frame LH, Molinoff PB (1985) β2-Adrenergic receptors contribute to catecholamine-stimulated shortening of action potential duration in dog atrial muscle. Proc Natl Acad Sci USA 82:4521–4525

    PubMed  CAS  Google Scholar 

  • Liang X, Xie H, Zhu PH et al (2008) Ryanodine receptor-mediated Ca2+ events in atrial myocytes of patients with atrial fibrillation. Cardiology 111:102–110

    PubMed  Google Scholar 

  • Lonardo G, Cerbai E, Casini S et al (2005) Pharmacological modulation of the hyperpolarization-activated current (If) in human atrial myocytes: focus on G protein-coupled receptors. J Mol Cell Cardiol 38:453–460

    PubMed  CAS  Google Scholar 

  • Lopez-Sendon J, Swedberg K, McMurray J et al (2004) Expert consensus document on β-adrenergic receptor blockers. The task force on beta-blockers of the European Society of Cardiology. Eur Heart J 25:1341–1362

    PubMed  Google Scholar 

  • Mackenzie L, Roderick HL, Berridge MJ et al (2004) The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J Cell Sci 117:6327–6337

    PubMed  CAS  Google Scholar 

  • Marshall G, Rankin AC, Kane KA et al (2006) Pharmacological remodelling of human atrial K+ currents by chronic beta-blockade. Eur Heart J 27:30 Abstract

    Google Scholar 

  • Marshall GE, Tellez JO, Russell JA et al (2009) Remodelling of human atrial ITO current but not ion channel expression by chronic beta-blockade. Heart Rhythm 6(Suppl 1):S230 Abstract

    Google Scholar 

  • Mary-Rabine L, Hordof AJ, Bowman FO et al (1978) Alpha and beta adrenergic effects on human atrial specialized conducting fibers. Circulation 57:84–90

    PubMed  CAS  Google Scholar 

  • Mary-Rabine L, Hordof AJ, Danilo P Jr et al (1980) Mechanisms for impulse initiation in isolated human atrial fibers. Circ Res 47:267–277

    PubMed  CAS  Google Scholar 

  • Mathew JP, Fontes ML, Tudor IC et al (2004) A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA-J Am Med Assoc 291:1720–1729

    CAS  Google Scholar 

  • McMurray J, Kober L, Robertson M et al (2005) Antiarrhythmic effect of carvedilol after acute myocardial infarction: results of the carvedilol post-infarct survival control in left ventricular dysfunction (CAPRICORN) trial. J Am Coll Cardiol 45:525–530

    PubMed  CAS  Google Scholar 

  • Mewes T, Dutz S, Ravens U et al (1993) Activation of calcium currents in cardiac myocytes by empty β-adrenoceptors. Circulation 88:2916–2922

    PubMed  CAS  Google Scholar 

  • Michel MC, Pingsmann A, Beckeringh JJ et al (1988) Selective regulation of β1- and β2-adrenoceptors in the human heart by chronic β-adrenoceptor antagonist treatment. Br J Pharmacol 94:685–692

    PubMed  CAS  Google Scholar 

  • Mitchell MR, Powell T, Sturridge MF et al (1986) Electrical properties and response to noradrenaline of individual heart cells isolated from human ventricular tissue. Cardiovasc Res 20:869–876

    PubMed  CAS  Google Scholar 

  • Miyauchi Y, Zhou S, Okuyama Y et al (2003) Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction. Implications for atrial fibrillation. Circulation 108:360–366

    PubMed  Google Scholar 

  • Moniotte S, Kobzik L, Feron O et al (2001) Upregulation of β3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655

    PubMed  CAS  Google Scholar 

  • Murphy NF, Simpson CR, Jhund PS et al (2007) A national survey of the prevalence, incidence, primary care burden and treatment of atrial fibrillation in Scotland. Heart 93:606–612

    PubMed  Google Scholar 

  • Ono K, Eto K, Sakamoto A et al (1995) Negative chronotropic effect of endothelin 1 mediated through ETA receptors in guinea pig atria. Circ Res 76:284–292

    PubMed  CAS  Google Scholar 

  • Oostendorp J, Kaumann AJ (2000) Pertussis toxin suppresses carbachol-evoked cardiodepression but does not modify cardiostimulation mediated through β1- and putative β4-adrenoceptors in mouse left atria: no evidence for β2- and β3-adrenoreceptor function. Naunyn Schmiedebergs Arch Pharmacol 361:134–145

    PubMed  CAS  Google Scholar 

  • Oral H, Crawford T, Frederick M et al (2008) Inducibility of paroxysmal atrial fibrillation by isoproterenol and its relation to the mode of onset of atrial fibrillation. J Cardiovasc Electrophysiol 19:466–470

    PubMed  Google Scholar 

  • Ouadid H, Albat B, Nargeot J (1995) Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 25:282–291

    PubMed  CAS  Google Scholar 

  • Patterson E, Po SS, Scherlag BJ et al (2005) Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm 2:624–631

    PubMed  Google Scholar 

  • Pau D, Workman AJ, Kane KA et al (2003) Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic β-adrenoceptor blockade. Br J Pharmacol 140:1434–1441

    PubMed  CAS  Google Scholar 

  • Pau D, Workman AJ, Kane KA et al (2007) Electrophysiological and arrhythmogenic effects of 5-hydroxytryptamine on human atrial cells are reduced in atrial fibrillation. J Mol Cell Cardiol 42:54–62

    PubMed  CAS  Google Scholar 

  • Pelzmann B, Schaffer P, Machler H et al (1995) Adenosine inhibits the L-type calcium current in human atrial myocytes. Naunyn Schmiedebergs Arch Pharmacol 351:293–297

    PubMed  CAS  Google Scholar 

  • Perez-Lugones A, McMahon JT, Ratliff NB et al (2003) Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. J Cardiovasc Electrophysiol 14:803–809

    PubMed  Google Scholar 

  • Piot C, Lemaire S, Albat B et al (1996) High frequency-induced upregulation of human cardiac calcium currents. Circulation 93:120–128

    PubMed  CAS  Google Scholar 

  • Priori SG, Corr PB (1990) Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol 258:H1796–H1805

    PubMed  CAS  Google Scholar 

  • Prystowsky EN (1988) The effects of slow channel blockers and beta blockers on atrioventricular nodal conduction. J Clin Pharmacol 28:6–21

    PubMed  CAS  Google Scholar 

  • Qi XY, Yeh YH, Xiao L et al (2008) Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res 103:845–854

    PubMed  CAS  Google Scholar 

  • Raine AEG, Chubb IW (1977) Long term β-adrenergic blockade reduces tyrosine hydroxylase and dopamine β-hydroxylase activities in sympathetic ganglia. Nature 267:265–267

    PubMed  CAS  Google Scholar 

  • Raine AEG, Vaughan Williams EM (1980) Adaptational responses to prolonged β-adrenoceptor blockade in adult rabbits. Br J Pharmacol 70:205–218

    PubMed  CAS  Google Scholar 

  • Raine AEG, Vaughan Williams EM (1981) Adaptation to prolonged β-blockade of rabbit atrial, Purkinje, and ventricular potentials, and of papillary muscle contraction. Time-course of development of and recovery from adaptation. Circ Res 48:804–812

    PubMed  CAS  Google Scholar 

  • Rasmussen HH, ten Eick RE, Okita GT et al (1985) Inhibition of electrogenic Na-pumping attributable to binding of cardiac steroids to high-affinity pump sites in human atrium. J Pharmacol Exp Ther 235:629–635

    PubMed  CAS  Google Scholar 

  • Redpath CJ, Rankin AC, Kane KA et al (2006) Anti-adrenergic effects of endothelin on human atrial action potentials are potentially anti-arrhythmic. J Mol Cell Cardiol 40:717–724

    PubMed  CAS  Google Scholar 

  • Rensma PL, Allessie MA, Lammers WJEP et al (1988) Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res 62:395–410

    PubMed  CAS  Google Scholar 

  • Roth DA, Urasawa K, Helmer GA et al (1993) Downregulation of cardiac guanosine 5'-triphosphate-binding proteins in right atrium and left ventricle in pacing-induced congestive heart failure. J Clin Invest 91:939–949

    PubMed  CAS  Google Scholar 

  • Sakai R, Hagiwara N, Kasanuki H et al (1995) Chloride conductance in human atrial cells. J Mol Cell Cardiol 27:2403–2408

    PubMed  CAS  Google Scholar 

  • Salameh A, Frenzel C, Boldt A et al (2006) Subchronic alpha- and beta-adrenergic regulation of cardiac gap junction protein expression. Faseb J 20:365–367

    PubMed  CAS  Google Scholar 

  • Sato R, Koumi SI (1995) Modulation of the inwardly rectifying K+ channel in isolated human atrial myocytes by α1-adrenergic stimulation. J Membr Biol 148:185–191

    PubMed  CAS  Google Scholar 

  • Sato R, Koumi SI (1998) Characterization of the stretch-activated chloride channel in isolated human atrial myocytes. J Membr Biol 163:67–76

    PubMed  CAS  Google Scholar 

  • Schackow TE, ten Eick RE (1994) Enhancement of ATP-sensitive potassium current in cat ventricular myocytes by β-adrenoreceptor stimulation. J Physiol 474:131–145

    PubMed  CAS  Google Scholar 

  • Schaffer P, Pelzmann B, Bernhart E et al (1998) Estimation of outward currents in isolated human atrial myocytes using inactivation time course analysis. Pflugers Arch 436:457–468

    PubMed  CAS  Google Scholar 

  • Scherer D, Kiesecker C, Kulzer M et al (2007) Activation of inwardly rectifying Kir2.x potassium channels by β3-adrenoceptors is mediated via different signaling pathways with a predominant role of PKC for Kir2.1 and of PKA for Kir2.2. Naunyn Schmiedebergs Arch Pharmacol 375:311–322

    PubMed  CAS  Google Scholar 

  • Sharifov OF, Fedorov VV, Beloshapko GG et al (2004) Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol 43:483–490

    PubMed  CAS  Google Scholar 

  • Shimizu A, Fukatani M, Tanigawa M et al (1994a) Mechanism of the suppression of repetitive atrial firing by isoproterenol-comparison with disopyramide. Int J Cardiol 43:175–183

    PubMed  CAS  Google Scholar 

  • Shimizu W, Tsuchioka Y, Karakawa S et al (1994b) Differential effect of pharmacological autonomic blockade on some electrophysiological properties of the human ventricle and atrium. Br Heart J 71:34–37

    PubMed  CAS  Google Scholar 

  • Skasa M, Jungling E, Picht E et al (2001) L-type calcium currents in atrial myocytes from patients with persistent and non-persistent atrial fibrillation. Basic Res Cardiol 96:151–159

    PubMed  CAS  Google Scholar 

  • Skeberdis VA, Jurevicius J, Fischmeister R (1997) Beta-2 adrenergic activation of L-type Ca++ current in cardiac myocytes. J Pharmacol Exp Ther 283:452–461

    PubMed  CAS  Google Scholar 

  • Sleator W Jr, De Gubareff T (1964) Transmembrane action potentials and contractions of human atrial muscle. Am J Physiol 206:1000–1014

    PubMed  Google Scholar 

  • Smeets JLRM, Allessie MA, Lammers WJEP et al (1986) The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ Res 58:96–108

    PubMed  CAS  Google Scholar 

  • Stambler BS, Wood MA, Ellenbogen KA (1996) Pharmacologic alterations in human type I atrial flutter cycle length and monophasic action potential duration. Evidence of a fully excitable gap in the reentrant circuit. J Am Coll Cardiol 27:453–461

    PubMed  CAS  Google Scholar 

  • Stambler BS, Fenelon G, Shepard RK et al (2003) Characterization of sustained atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure. J Cardiovasc Electrophysiol 14:499–507

    PubMed  Google Scholar 

  • Steeds RP, Birchall AS, Smith M et al (1999) An open label, randomised, crossover study comparing sotalol and atenolol in the treatment of symptomatic paroxysmal atrial fibrillation. Heart 82:170–175

    PubMed  CAS  Google Scholar 

  • Steinfath M, Lavicky J, Schmitz W et al (1992) Regional distribution of β1- and β2-adrenoceptors in the failing and nonfailing human heart. Eur J Clin Pharmacol 42:607–611

    PubMed  CAS  Google Scholar 

  • Stengl M, Ramakers C, Donker DW et al (2006) Temporal patterns of electrical remodeling in canine ventricular hypertrophy: focus on I Ks downregulation and blunted β-adrenergic activation. Cardiovasc Res 72:90–100

    PubMed  CAS  Google Scholar 

  • Stiber JA, Seth M, Rosenberg PB (2009) Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore. J Cardiovasc Pharmacol 54:116–122

    PubMed  CAS  Google Scholar 

  • Stillitano F, Lonardo G, Zicha S et al (2008) Molecular basis of funny current (If) in normal and failing human heart. J Mol Cell Cardiol 45:289–299

    PubMed  CAS  Google Scholar 

  • Su MJ, Chi JF, Chu SH (1994) Adrenergic modulation of potassium currents in isolated human atrial myocytes. J Biomed Sci 1:193–200

    PubMed  CAS  Google Scholar 

  • Trautwein W, Kassebaum DG, Nelson RM et al (1962) Electrophysiological study of human heart muscle. Circ Res 10:306–312

    PubMed  CAS  Google Scholar 

  • Tsai CS, Cheng TH, Lin CI et al (2001) Inhibitory effect of endothelin-1 on the isoproterenol-induced chloride current in human cardiac myocytes. Eur J Pharmacol 424:97–105

    PubMed  CAS  Google Scholar 

  • Tsang TSM, Gersh BJ, Appleton CP et al (2002) Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol 40:1636–1644

    PubMed  Google Scholar 

  • Van Veldhuisen DJ, Aass H, El Allaf D et al (2006) Presence and development of atrial fibrillation in chronic heart failure. Experiences from the MERIT-HF study. Eur J Heart Fail 8:539–546

    PubMed  Google Scholar 

  • Van Wagoner DR, Pond AL, Lamorgese M et al (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85:428–436

    PubMed  Google Scholar 

  • Vest JA, Wehrens XHT, Reiken SR et al (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111:2025–2032

    PubMed  CAS  Google Scholar 

  • Voigt N, Bollman B, Wettwer E et al (2009) Alpha-adrenergic regulation of IK1 and ACh-gated IK,ACh is impaired in patients with atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 379:52 Abstract

    Google Scholar 

  • Volders PGA, Stengl M, van Opstal JM et al (2003) Probing the contribution of IKs to canine ventricular repolarization. Key role for β-adrenergic receptor stimulation. Circulation 107:2753–2760

    PubMed  Google Scholar 

  • Walden AP, Dibb KM, Trafford AW (2009) Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J Mol Cell Cardiol 46:463–473

    PubMed  CAS  Google Scholar 

  • Wang Z, Fermini B, Nattel S (1994) Rapid and slow components of delayed rectifier current in human atrial myocytes. Cardiovasc Res 28:1540–1546

    PubMed  CAS  Google Scholar 

  • Wang C, Zhang YJ, Wang YL et al (2006) Effect of dipfluzine on delayed afterdepolarizations and triggered activity induced by isoprenaline in human atrial fibers. Acta Pharmaceutica Sinica 41:184–187

    PubMed  CAS  Google Scholar 

  • Webb JL, Hollander P (1956) The action of acetylcholine and epinephrine on the cellular membrane potentials and contractility of rat atrium. Circ Res 4:332–336

    PubMed  CAS  Google Scholar 

  • Wettwer E, Hala O, Christ T et al (2004) Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation 110:2299–2306

    PubMed  Google Scholar 

  • Wijffels MCEF, Kirchhof C, Dorland R et al (1997) Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats. Roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation 96:3710–3720

    PubMed  CAS  Google Scholar 

  • Wit AL, Boyden PA (2007) Triggered activity and atrial fibrillation. Heart Rhythm 4:S17–S23

    PubMed  Google Scholar 

  • Wit AL, Hoffman BF, Rosen MR (1975) Electrophysiology and pharmacology of cardiac arrhythmias IX. Cardiac electrophysiologic effects of beta adrenergic receptor stimulation and blockade. Part C. Am Heart J 90:795–803

    PubMed  CAS  Google Scholar 

  • Workman AJ, Rankin AC (1998) Serotonin, If and human atrial arrhythmia. Cardiovasc Res 40:436–437

    PubMed  CAS  Google Scholar 

  • Workman AJ, Kane KA, Rankin AC (1999) Ionic basis of a differential effect of adenosine on refractoriness in rabbit AV nodal and atrial isolated myocytes. Cardiovasc Res 43:974–984

    PubMed  CAS  Google Scholar 

  • Workman AJ, Kane KA, Rankin AC (2001) The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52:226–235

    PubMed  CAS  Google Scholar 

  • Workman AJ, Kane KA, Rankin AC (2003a) Characterisation of the Na, K pump current in atrial cells from patients with and without chronic atrial fibrillation. Cardiovasc Res 59:593–602

    PubMed  CAS  Google Scholar 

  • Workman AJ, Kane KA, Russell JA et al (2003b) Chronic beta-adrenoceptor blockade and human atrial cell electrophysiology: evidence of pharmacological remodelling. Cardiovasc Res 58:518–525

    PubMed  CAS  Google Scholar 

  • Workman AJ, Pau D, Redpath CJ et al (2006) Post-operative atrial fibrillation is influenced by beta-blocker therapy but not by pre-operative atrial cellular electrophysiology. J Cardiovasc Electrophysiol 17:1230–1238

    PubMed  Google Scholar 

  • Workman AJ, Kane KA, Rankin AC (2008) Cellular bases for human atrial fibrillation. Heart Rhythm 5:S1–S6

    PubMed  Google Scholar 

  • Workman AJ, Pau D, Redpath CJ et al (2009) Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF. Heart Rhythm 6:445–451

    PubMed  Google Scholar 

  • Yeh TC, Vassalle M, Lin CI (1992) Arrhythmogenic mechanisms in human atrial and ventricular muscle fibers. Cardiology 80:205–214

    PubMed  CAS  Google Scholar 

  • Yeh YH, Ehrlich JR, Qi X et al (2007) Adrenergic control of a constitutively active acetylcholine-regulated potassium current in canine atrial cardiomyocytes. Cardiovasc Res 74:406–415

    PubMed  CAS  Google Scholar 

  • Yeh YH, Wakili R, Qi XY et al (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythmia Electrophysiol 1:93–102

    CAS  Google Scholar 

  • Yoshimoto K, Hattori Y, Houzen H et al (1998) Histamine H1-receptor-mediated increase in the Ca2+ transient without a change in the Ca2+ current in electrically stimulated guinea-pig atrial myocytes. Br J Pharmacol 124:1744–1750

    PubMed  CAS  Google Scholar 

  • Yue L, Feng J, Li GR et al (1996) Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol 270:H2157–H2168

    PubMed  CAS  Google Scholar 

  • Yue L, Feng J, Gaspo R et al (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525

    PubMed  CAS  Google Scholar 

  • Zhou Z, Lipsius SL (1993) Na+-Ca2+ exchange current in latent pacemaker cells isolated from cat right atrium. J Physiol 466:263–285

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

British Heart Foundation for financial support (Basic Science Lectureship Award, renewal: BS/06/003), and Dr John Dempster, University of Strathclyde, for helpful discussions about CESE Pro software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony J. Workman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Workman, A.J. Cardiac adrenergic control and atrial fibrillation. Naunyn-Schmied Arch Pharmacol 381, 235–249 (2010). https://doi.org/10.1007/s00210-009-0474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0474-0

Keywords

Navigation