Skip to main content

Advertisement

Log in

Novel selective ligands for free fatty acid receptors GPR120 and GPR40

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

GPR120 and GPR40 are G-protein-coupled receptors whose endogenous ligands are medium- and long-chain free fatty acids, and they are thought to play an important physiological role in insulin release. Despite recent progress in understanding their roles, much still remains unclear about their pharmacology, and few specific ligands for GPR120 and GPR40 besides medium- to long-chain fatty acids have been reported so far. To identify new selective ligands for these receptors, more than 80 natural compounds were screened, together with a reference compound MEDICA16, which is known to activate GPR40, by monitoring the extracellular regulated kinase (ERK) and [Ca2+]i responses in inducible and stable expression cell lines for GPR40 and GPR120, respectively. MEDICA16 selectively activated [Ca2+]i response in GPR40-expressing cells but not in GPR120-expressing cells. Among the natural compounds tested, grifolin derivatives, grifolic acid and grifolic acid methyl ether, promoted ERK and [Ca2+]i responses in GPR120-expressing cells, but not in GPR40-expressing cells, and inhibited the α-linolenic acid (LA)-induced ERK and [Ca2+]i responses in GPR120-expressing cells. Interestingly, in accordance with the pharmacological profiles of these compounds, similar profiles of glucagon-like peptide-1 secretion were seen for mouse enteroendocrine cell line, STC-1 cells, which express GPR120 endogenously. Taken together, these studies identified a selective GPR40 agonist and several GPR120 partial agonists. These compounds would be useful probes to further investigate the physiological and pharmacological functions of GPR40 and GPR120.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14:48–58

    PubMed  CAS  Google Scholar 

  • Bar-Tana J, Rose-Kahn G, Srebnik M (1985) Inhibition of lipid synthesis by beta beta′-tetramethyl-substituted, C14–C22, alpha, omega-dicarboxylic acids in the rat in vivo. J Biol Chem 260:8404–8410

    PubMed  CAS  Google Scholar 

  • Bharate SB, Rodge A, Joshi RK, Kaur J, Srinivasan S, Senthil Kumar S, Kulkarni-Almeida A, Balachandran S, Balakrishnan A, Vishwakarma RA (2008) Discovery of diacylphloroglucinols as a new class of GPR40 (FFAR1) agonists. Bioorg Med Chem Lett 18:6357–6361

    Article  PubMed  CAS  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311

    Article  PubMed  CAS  Google Scholar 

  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C, Fornwald JA, Ignar DM, Jenkinson S (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148:619–628

    Article  PubMed  CAS  Google Scholar 

  • Christiansen E, Urban C, Merten N, Liebscher K, Karlsen KK, Hamacher A, Spinrath A, Bond AD, Drewke C, Ullrich S, Kassack MU, Kostenis E, Ulven T (2008) Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA(1)/GPR40), a potential target for the treatment of type II diabetes. J Med Chem 51:7061–7064

    Article  PubMed  CAS  Google Scholar 

  • Davi M, Lebel H (2008) One-pot approach for the synthesis of trans-cyclopropyl compounds from aldehydes. Application to the synthesis of GPR40 receptor agonists. Chem Commun (Camb) 40:4974–4976

    Article  Google Scholar 

  • Feng DD, Luo Z, Roh SG, Hernandez M, Tawadros N, Keating DJ, Chen C (2006) Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta-cells by linoleic acids. Endocrinology 147:674–682

    Article  PubMed  CAS  Google Scholar 

  • Gotoh C, Hong YH, Iga T, Hishikawa D, Suzuki Y, Song SH, Choi KC, Adachi T, Hirasawa A, Tsujimoto G, Sasaki S, Roh SG (2007) The regulation of adipogenesis through GPR120. Biochem Biophys Res Commun 354:591–597

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Hirasawa A, Sun Q, Koshimizu TA, Itsubo C, Sadakane K, Awaji T, Tsujimoto G (2009) Flow cytometry-based binding assay for GPR40 (FFAR1; free fatty acid receptor 1). Mol Pharmacol 75:85–91

    Article  PubMed  CAS  Google Scholar 

  • Hardy S, St-Onge GG, Joly E, Langelier Y, Prentki M (2005) Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem 280:13285–13291

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Quang DN, Nukata M, Asakawa Y (2005) Isolation synthesis and biological activity of grifolic acid derivatives from the inedible mushroom Albatrellus dispansus. Heterocycles 65:2431–2439

    Article  CAS  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G (2008a) Free fatty acid receptors and drug discovery. Biol Pharm Bull 31:1847–1851

    Article  CAS  Google Scholar 

  • Hirasawa A, Itsubo C, Sadakane K, Hara T, Shinagawa S, Koga H, Nose H, Koshimizu TA, Tsujimoto G (2008b) Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid receptor 1). Biochem Biophys Res Commun 365:22–28

    Article  CAS  Google Scholar 

  • Ishii N, Takahashi A, Kusano G, Nozoe S (1988) Studies on the constituents of Polyporus dispansus and P. confluens. Chem Pharm Bull 36:2918–2924

    CAS  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176

    Article  PubMed  CAS  Google Scholar 

  • Katsuma S, Hatae N, Yano T, Ruike Y, Kimura M, Hirasawa A, Tsujimoto G (2005) Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J Biol Chem 280:19507–19515

    Article  PubMed  CAS  Google Scholar 

  • Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B (2003) A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 301:406–410

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi S, Hirasawa A, Iga T, Liu N, Itsubo C, Sadakane K, Hara T, Tsujimoto G (2009) Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmiedebergs Arch Pharmacol 379:427–434

    Article  PubMed  CAS  Google Scholar 

  • Nukata M, Hashimoto T, Yamamoto I, Iwasaki N, Tanaka M, Asakawa Y (2002) Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochemistry 59:731–737

    Article  PubMed  CAS  Google Scholar 

  • Poitout V (2003) The ins and outs of fatty acids on the pancreatic beta cell. Trends Endocrinol Metab 14:201–203

    Article  PubMed  CAS  Google Scholar 

  • Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H (2005) The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 1:245–258

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K, Kawagishi H, Tanaka A, Saeki S, Yoshida S, Sakamoto H, Ishiguro Y (1992) Isolation of plasma cholesterol-lowering components from ningyotake (Polyporus confluens) mushroom. J Nutr Sci Vitaminol (Tokyo) 38:335–342

    CAS  Google Scholar 

  • Suzuki T, Igari S, Hirasawa A, Hata M, Ishiguro M, Fujieda H, Itoh Y, Hirano T, Nakagawa H, Ogura M, Makishima M, Tsujimoto G, Miyata N (2008) Identification of G protein-coupled receptor 120-selective agonists derived from PPARgamma agonists. J Med Chem 51:7640–7644

    Article  PubMed  CAS  Google Scholar 

  • Swaminath G (2008) Fatty acid binding receptors and their physiological role in type 2 diabetes. Arch Pharm (Weinheim) 341:753–761

    Article  CAS  Google Scholar 

  • Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G (2008a) Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 377:523–527

    Article  CAS  Google Scholar 

  • Tanaka T, Yano T, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G (2008b) Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells. Naunyn Schmiedebergs Arch Pharmacol 377:515–522

    Article  CAS  Google Scholar 

  • Tikhonova IG, Sum CS, Neumann S, Thomas CJ, Raaka BM, Costanzi S, Gershengorn MC (2007) Bidirectional, iterative approach to the structural delineation of the functional “chemoprint” in GPR40 for agonist recognition. J Med Chem 50:2981–2989

    Article  PubMed  CAS  Google Scholar 

  • Vrkoc J, Budesinsky M, Dolejs L (1997) Phenolic meroterpenoids from the basidiomycete Albatrelllus ovinus. Phytochemistry 16:1409–1411

    Article  Google Scholar 

  • Yonezawa T, Katoh K, Obara Y (2004) Existence of GPR40 functioning in a human breast cancer cell line, MCF-7. Biochem Biophys Res Commun 314:805–809

    Article  PubMed  CAS  Google Scholar 

  • Zechlin L, Wolf M, Steglich W, Anke T (1981) Antibiotika aus Basidiomyceten, XII. Cristatsäure, ein modifiziertes Farnesylphenol aus Fruchtkörpern von Albatrellus cristatus. Liebigs Annalen der Chemie 12:2099–3105

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grants from the Scientific Fund of the Ministry of Education, Science, and Culture of Japan (to G.T.), the Program for Promotion of Fundamental Studies in Health Sciences of National Institute of Biomedical Innovation (NIBIO) (to G.T.), the Japan Health Science Foundation and the Ministry of Human Health and Welfare (to G.T.), in part by the Mitsubishi Foundation, Uehara Memorial Foundation, the Sankyo Foundation of Life Science (to G.T.), and the Mochida Memorial Foundation for Medical and Pharmaceutical Research and the Yakult Bio-Science Foundation (to A.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gozoh Tsujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, T., Hirasawa, A., Sun, Q. et al. Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn-Schmied Arch Pharmacol 380, 247–255 (2009). https://doi.org/10.1007/s00210-009-0425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0425-9

Keywords

Navigation