Skip to main content
Log in

The in vitro receptor profile of rotigotine: a new agent for the treatment of Parkinson’s disease

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Rotigotine (Neupro®) is a non-ergoline dopamine agonist developed for the once daily treatment of Parkinson’s disease (PD) using a transdermal delivery system (patch) which provides patients with the drug continuously over 24 h. To fully understand the pharmacological actions of rotigotine, the present study determined its extended receptor profile. In standard binding assays, rotigotine demonstrated the highest affinity for dopamine receptors, particularly the dopamine D3 receptor (K i = 0.71 nM) with its affinities to other dopamine receptors being (K i in nM): D4.2 (3.9), D4.7 (5.9), D5 (5.4), D2 (13.5), D4.4 (15), and D1 (83). Significant affinities were also demonstrated at α-adrenergic (α2B, K i = 27 nM) and serotonin receptors (5-HT1A K i = 30 nM). In newly developed reporter-gene assays for determination of functional activity, rotigotine behaved as a full agonist at dopamine receptors (rank order: D3 > D2L > D1 = D5 > D4.4) with potencies 2,600 and 53 times higher than dopamine at dopamine D3 and D2L receptors, respectively. At α-adrenergic sites, rotigotine acted as an antagonist on α2B receptors. At serotonergic sites, rotigotine had a weak but significant agonistic activity at 5-HT1A receptors and a minor or nonexistent activity at other serotonin receptors. Thus, in respect to PD, rotigotine can be characterized as a specific dopamine receptor agonist with a preference for the D3 receptor over D2 and D1 receptors. In addition, it exhibits interaction with D4 and D5 receptors, the role of which in relation to PD is not clear yet. Among non-dopaminergic sites, rotigotine shows relevant affinity to only 5-HT1A and α2B receptors. Further studies are necessary to investigate the contribution of the different receptor subtypes to the efficacy of rotigotine in Parkinson’s disease and possible other indications such as restless legs syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Fulaij MA, Ren Y, Beinborn M, Kopin AS (2007) Identification of amino acid determinants of dopamine 2 receptor synthetic agonist function. J Pharmacol Exp Ther 321:298–307 doi:10.1124/jpet.106.116 384

    Article  PubMed  CAS  Google Scholar 

  • Andersen PH (1987) Biochemical and pharmacological characterisation of [3H]GBR12935 binding in vitro to rat striatal membranes: labeling of dopamine uptake complex. J Neurochem 48:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Bibbiani F, Morris MJ, Dimitrova T, Sherzai A, Mouradian MM, Chase TN (2005) Effects of serotonin 5-HT1A agonist in advanced Parkinson’s disease. Mov Disord 20:932–936

    Article  PubMed  Google Scholar 

  • Belluzzi JD, Domino EF, May JM, Bankiewicz KS, McAfee DA (1994) N-0923, a selective dopamine D2 receptor agonist, is efficacious in rat and monkey models of Parkinson’s disease. Mov Disord 9:147–154

    Article  PubMed  CAS  Google Scholar 

  • Bibbiani F, Oh JD, Chase TN (2001) Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834

    PubMed  CAS  Google Scholar 

  • Blier P, Abbott FV (2001) Putative mechanisms of action of antidepressant drugs in affective and anxiety disorders and pain. J Psychiatry Neurosci 26:37–43

    PubMed  CAS  Google Scholar 

  • Bonanno G, Fassio A, Severi P, Ruelle A, Raiteri MJ (1994) Fenfluramine releases serotonin from human brain nerve endings by a dual mechanism. J Neurochem 63:1163–1166

    PubMed  CAS  Google Scholar 

  • Bondiolotti GP, Galva MD, Villa F, Sciaba L, Picotti GB (1995) In vitro effects on monoamine uptake and release by the reversible monoamine oxidase-B inhibitors lazabelide and N-(2-aminoethyl)-p-chlorobenzamide: a comparison with L-deprenyl. Biochem Pharmacol 50:97–102

    Article  PubMed  CAS  Google Scholar 

  • Bonhaus DW, Bach C, De Souza A, Salazar FHR, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Brit J Pharmacol 115:622–628

    CAS  Google Scholar 

  • Bowen WD, De Costa BR, Hellewell SB, Walker M, Rice KC (1993) [3H]-(+)-pentazocine: a potent and highly selective benzomorphan-based probe for sigma1 receptors. Mo. Neuropharmacol 3:117–126

    CAS  Google Scholar 

  • Brown GB (1986) 3H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin. J Neurosci 6:2064–2070

    PubMed  CAS  Google Scholar 

  • Bylund DB, Ray-Prenger C, Murphy TJ (1988) Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther 245:600–607

    PubMed  CAS  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833 doi:10.1093/brain/awm082

    Article  PubMed  Google Scholar 

  • Carvey PM, McGuire SO, Ling ZD (2001) Neuroprotective effects of D3 dopamine receptor agonists. Parkinsonism Relat Disord 7:213–223

    Article  PubMed  Google Scholar 

  • Catterall WA (1979) Neurotoxins as allosteric modifiers of voltage-sensitive sodium channels. Ad Cytopharmacol 3:305–316

    CAS  Google Scholar 

  • Clark D, White FJ (1987) D1 dopamine receptor—the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse 1:347–388

    Article  PubMed  CAS  Google Scholar 

  • Clarke CE, Guttman M (2002) Dopamine agonist monotherapy in Parkinson’s disease. Lancet 360:1767–1769

    Article  PubMed  CAS  Google Scholar 

  • Corvol JC, Girault JA, Herve D (2006) Role and regulation of dopamine D1 receptors in the striatum: implications for the genesis of dyskinesia in Parkinson’s disease. Rev Neurol (Paris) 162:691–702

    Google Scholar 

  • Cotzias GC (1971) Levodopa in the treatment of Parkinsonism. JAMA 218:1903–1908

    Article  PubMed  CAS  Google Scholar 

  • Devedjian J-C, Esclapez F, Denis-Pouxviel C, Paris H (1994) Further characterization of human α2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional selective drugs. Eur J Pharmacol 252:43–49

    Article  PubMed  CAS  Google Scholar 

  • Dini S, Caselli GF, Ferrari MP, Giani R, Clavenna G (1991) Heterogeneity of [3H]-mepyramine binding sites in guinea pig cerebellum and lung. Agents Actions 33(1-2):181–184

    Article  PubMed  CAS  Google Scholar 

  • Dorje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 256:727–733

    PubMed  CAS  Google Scholar 

  • Doudet DJ, Holden JE, Jivan S, McGeer E, Wyatt RJ (2000) In vivo PET studies of the dopamine D2 receptors in rhesus monkeys with long-term MPTP-induced parkinsonism. Synapse 38:105–113

    Article  PubMed  CAS  Google Scholar 

  • Fahn S (1999) Parkinson disease, the effect of levodopa, and the ELLDOPA trial: earlier vs later L-DOPA. Arch Neurol 56:529–535

    Article  PubMed  CAS  Google Scholar 

  • Fan F, Paguio A, Garvin D, Wood KV (2005) Using luciferase assays to study G-protein-coupled receptor pathways and screen for GPCR modulators. Cell Notes 13:5–7

    Google Scholar 

  • Friedman DJ, Krause DN, Duckles SP (1992) Complex prejunctional actions of the D2 dopamine agonists N-0923 and N-0924 in the rat tail artery. J Pharmacol Exp Ther 260:568–575

    PubMed  CAS  Google Scholar 

  • George SE, Bungay PJ, Naylor LH (1998) Functional analysis of the D2L dopamine receptor expressed in a cAMP-responsive luciferase reporter cell line. Biochem Pharmacol 56:25–30

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Double K, Arzberger T, Leblhuber F, Tatschner T, Riederer P (2003) Dopamine receptor agonists in current clinical use: comparative dopamine receptor binding profiles defined in the human striatum. J Neural Transm 110:1119–1127 doi:10.1007/s00702-003-0027-5

    Article  PubMed  CAS  Google Scholar 

  • Giardina WJ, Williams M (2001) Adrogolide HCl (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: preclinical pharmacology and clinical data. CNS Drug Rev 7:305–316

    PubMed  CAS  Google Scholar 

  • Grandy DK, Marchionni MA, Makam H, Stofko RE, Alfano M, Frothingham L, Fischer JB, Burke-Howie KJ, Bunzow JR, Server AC, Civelli O (1989) Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA 86:9762–9766

    Article  PubMed  CAS  Google Scholar 

  • Grondin R, Hadj TA, Doan VD, Ladure P, Bedard PJ (2000) Noradrenoceptor antagonism with idazoxan improves l-dopa-induced dyskinesias in MPTP monkeys. Naunyn Schmiedebergs Arch Pharmacol 361:181–186

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Andrus PK, Oostveen JA, Althaus JS, VonVoigtlander PF (1996) Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res 742:80–88

    Article  PubMed  CAS  Google Scholar 

  • Henry B, Fox SH, Peggs D, Crossman AR, Brotchie JM (1999) The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of l-dopa in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 14:744–753

    Article  PubMed  CAS  Google Scholar 

  • Heuring RE, Peroutka SJ (1987) Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci 7:894–903

    PubMed  CAS  Google Scholar 

  • Janowsky A, Berger P, Vocci F, Labarca R, Skolnick P, Paul SM (1986) Characterization of sodium-dependent [3H]GBR-12935 binding in brain: a radioligand for selective labelling of the dopamine transport complex. J Neurochem 46:1272–1276

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2003) Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson’s disease. Curr Opin Neurol 16(Suppl 1):S3–S7

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Ou-Yang KQ, Cai SX, Hu YH, Xu ZL (2005) Identification of human dopamine D1-like receptor agonist using a cell-based functional assay. Acta Pharmacol Sin 26:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN (2001) Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol Ther 90:231–259

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Millan MJ (2007) Dopamine D3 receptor agonists for protection and repair in Parkinson’s disease. Curr Opin Pharmacol 7:100–105 doi:10.1016/j.coph.2006.11.004

    Article  PubMed  CAS  Google Scholar 

  • Lane JR, Powney B, Wise A, Rees S, Milligan G (2007) Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1,Gi2, and Gi3. Mol Pharmacol 71:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Launay JM, Herve P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, Maroteaux L (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 8:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Loschmann PA, Smith LA, Lange KW, Jahnig P, Jenner P, Marsden CD (1992) Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology (Berl) 109:49–56

    Article  CAS  Google Scholar 

  • Mackenzie RG, Vanleeuven D, Pugsley TA, Shih Y-H, Demattos S, Tang L, Todd R, O’malley KL (1994) Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur J Pharmacol 266:79–85

    Article  PubMed  CAS  Google Scholar 

  • Madhavan L, Freed WJ, Anantharam V, Kanthasamy AG (2003) 5-hydroxytryptamine 1A receptor activation protects against N-methyl-d-aspartate-induced apoptotic cell death in striatal and mesencephalic cultures. J Pharmacol Exp Ther 304:913–923

    Article  PubMed  CAS  Google Scholar 

  • Mailman RB, Nichols DE (1998) Dopamine D1 receptor agonists as antiparkinson drugs. Trends Pharmacol Sci 19:255–256

    Article  PubMed  CAS  Google Scholar 

  • Mailman R, Huang X, Nichols DE (2001) Parkinson’s disease and D1 dopamine receptors. Curr Opin Investig Drugs 2:1582–1591

    PubMed  CAS  Google Scholar 

  • Manson AJ, Iakovidou E, Lees AJ (2000) Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 15:336–337

    Article  PubMed  CAS  Google Scholar 

  • Maratos EC, Jackson MJ, Pearce RK, Cannizzaro C, Jenner P (2003) Both short- and long-acting D-1/D-2 dopamine agonists induce less dyskinesia than l-DOPA in the MPTP-lesioned common marmoset (Callithrix jacchus). Exp Neurol 179:90–102

    Article  PubMed  CAS  Google Scholar 

  • Martin PL, Kelly M, Cusack NJ (1993) (−)-2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin (N-0923), a selective D2 dopamine receptor agonist demonstrates the presence of D2 dopamine receptors in the mouse vas deferens but not in the rat vas deferens. J Pharmacol Exp Ther 267:1342–1348

    PubMed  CAS  Google Scholar 

  • Mauler F, Horvath E (2005) Neuroprotective efficacy of repinotan HCl, a 5-HT1A receptor agonist, in animal models of stroke and traumatic brain injury. J Cereb Blood Flow Metab 25:451–459

    Article  PubMed  CAS  Google Scholar 

  • Metman LV, Gillespie M, Farmer C, Bibbiani F, Konitsiotis S, Morris M, Shill H, Bara-Jimenez W, Mouradian MM, Chase TN (2001) Continuous transdermal dopaminergic stimulation in advanced Parkinson’s disease. Clin Neuropharmacol 24:163–169

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Loury DN, Whiting RL (1989) Identification of a single α1-adrenoceptor corresponding to the α1A-subtype in rat submaxillary gland. Brit J Pharmacol 98:883–889

    CAS  Google Scholar 

  • Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther 303:791–804

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Mulheron JG, Casanas SJ, Arthur JM, Garnovskaya MN, Gettys TW, Raymond JR (1994) Human 5-HT1A receptor expressed in insect cells activates endogenous G0-like G protein. J Biol Chem 269:12954–12962

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Audinot V, Chaput C, Verriele L, Millan MJ (1997) [35S]Guanosine-5¢-O-(3-thio)triphosphate binding as a measure of efficacy at human recombinant dopamine D4.4 receptors: actions of antiparkinsonian and antipsychotic agents. J Pharmacol Exp Ther 282:181–191

    PubMed  CAS  Google Scholar 

  • Nicholson SL, Brotchie JM (2002) 5-hydroxytryptamine (5-HT, serotonin) and Parkinson’s disease—opportunities for novel therapeutics to reduce the problems of levodopa therapy. Eur J Neurol 9(Suppl 3):1–6

    Article  PubMed  Google Scholar 

  • Olanow CW, Obeso JA (2000) Preventing levodopa-induced dyskinesias. Ann Neurol 47:S167–S176

    PubMed  CAS  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    Article  PubMed  CAS  Google Scholar 

  • Parkinson Study Group (2003) A controlled trial of rotigotine monotherapy in early Parkinson’s disease. Arch Neurol 60:1721–1728

    Article  Google Scholar 

  • Perovic S, Muller WEG (1995) Pharmacological profile of hypericum extract: effect on serotonin uptake by postsynaptic receptors. Arzneim-Forsch Drug Res 45:1145–1148

    CAS  Google Scholar 

  • Piercey MF (1998) Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson’s disease. Clin Neuropharmacol 21:141–151

    PubMed  CAS  Google Scholar 

  • Poewe W, Leussi F (2005) Clinical studies with transdermal rotigotine in early Parkinson’s disease. Neurology 65:S11–S14

    PubMed  CAS  Google Scholar 

  • Rascol O, Blin O, Thalamas C, Descombes S, Soubrouillard C, Azulay P, Fabre N, Viallet F, Lafnitzegger K, Wright S, Carter JH, Nutt JG (1999) ABT-431, a D1 receptor agonist prodrug, has efficacy in Parkinson’s disease. Ann Neurol 45:736–741

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Arnulf I, Peyro-Saint PH, Brefel-Courbon C, Vidailhet M, Thalamas C, Bonnet AM, Descombes S, Bejjani B, Fabre N, Montastruc JL, Agid Y (2001a) Idazoxan, an alpha-2 antagonist, and l-DOPA-induced dyskinesias in patients with Parkinson’s disease. Mov Disord 16:708–713

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Nutt JG, Blin O, Goetz CG, Trugman JM, Soubrouillard C, Carter JH, Currie LJ, Fabre N, Thalamas C, Giardina WW, Wright S (2001b) Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 58:249–254

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Ferreira JJ, Payoux P, Brefel-Courbon C, Montastruc JL (2002) Management of levodopa-induced dyskinesia. Rev Neurol (Paris) 158:117–124

    Google Scholar 

  • Rees S, Den Dass I, Foord S, Goodson S, Bull D, Kilpatrick G, Lee M (1994) Cloning and characterization of the human 5-HT5A serotonin receptor. FEBS Lett 355:242–246

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Laihinen A, Rinne UK, Nagren K, Bergman J, Ruotsalainen U (1993) PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Mov Disord 8:134–138

    Article  PubMed  CAS  Google Scholar 

  • Scheller D, Chan P, Li Q, Wu T, Zhang R, Guan L, Ravenscroft P, Guigoni C, Crossman AR, Hill M, Bezard E (2007) Rotigotine treatment partially protects from MPTP toxicity in a progressive macaque model of Parkinson’s disease. Exp Neurol 203:415–422

    Article  PubMed  CAS  Google Scholar 

  • Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (2003) 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 268:18200–18204

    PubMed  CAS  Google Scholar 

  • Sit SY (2000) Dopamine agonists in the treatment of Parkinson s disease past, present and future. Curr Pharm Des 6:1211–1248

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan J, Schmidt WJ (2004) Treatment with alpha2-adrenoceptor antagonist, 2-methoxy idazoxan, protects 6-hydroxydopamine-induced Parkinsonian symptoms in rats: neurochemical and behavioral evidence. Behav Brain Res 154:353–363

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O’dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HMM, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    Article  PubMed  CAS  Google Scholar 

  • Swart PJ, de Zeeuw RA (1992) Extensive gastrointestinal metabolic conversion limits the oral bioavailability of the dopamine D2 agonist N-0923 in freely moving rats. Pharmazie 47:613–615

    PubMed  CAS  Google Scholar 

  • Tan EK, Yeo AP, Tan V, Pavanni R, Wong MC (2005) Prescribing pattern in Parkinson’s disease: are cost and efficacy overriding factors? Int J Clin Pract 59:511–514

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Lawrence MS, Redmond DE Jr, Elsworth JD, Roth RH, Nichols DE, Mailman RB (1991) Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys. Eur J Pharmacol 199:389–391

    Article  PubMed  CAS  Google Scholar 

  • Van der Weide J, De Vries JB, Tepper PG, Horn AS (1987) In vitro binding of the very potent and selective D-2 dopamine agonist, [3H]N-0437 to calf caudate membranes. Eur J Pharmacol 134:211–219

    Article  PubMed  Google Scholar 

  • Van der Weide J, De Vries JB, Tepper PG, Krause DN, Dubocovich ML, Horn AS (1988) N-0437: a selective D-2 dopamine receptor agonist in in vitro and in vivo models. Eur J Pharmacol 147:249–258

    Article  PubMed  Google Scholar 

  • Vanhauwe JF, Fraeyman N, Francken BJ, Luyten WH, Leysen JE (1999) Comparison of the ligand binding and signaling properties of human dopamine D(2) and D(3) receptors in Chinese hamster ovary cells. J Pharmacol Exp Ther 290:908–916

    PubMed  CAS  Google Scholar 

  • Van Tol HHM, Wu CM, Guan H-G, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seeman P, Niznik HB, Jovanovic V (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358:149–152

    Article  PubMed  CAS  Google Scholar 

  • Watts RL, Wendt J, Nausieda PL, Boroojerdi B, Poole KH, Sommerville KW (2004) Efficacy of the rotigotine transdermal patch in patients with early-stage, idiopathic Parkinson’s disease. Results of a multicenter, multinational, randomized, double-blind, placebo-controlled trial. 2004. 8th Congress of European Federation of Neurological Societies

  • Williams M, Wright S, Lloyd GK (1997) Improved therapies for Parkinson’s disease: life beyond dopamine D2/D3 receptor agonists. Trends Pharmacol Sci 18:307–310

    Article  PubMed  CAS  Google Scholar 

  • Yamagushi T, Ohyama M, Suzuki M, Ozawa Y, Hatanaka K, Hidaka K, Yamamoto M (1998) Neurochemical and behavorial characterization of potential antidepressant properties of indeloxazine hydrochloride. Neuropharmacol 37:1169–1176

    Article  Google Scholar 

  • Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 356:39–46

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q-Y, Grandy DK, Thambi L, Kushner JA, Van Tol HHM, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (1990) Cloning and expression of human and rat D1 dopamine receptors. Nature 347:76–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheller, D., Ullmer, C., Berkels, R. et al. The in vitro receptor profile of rotigotine: a new agent for the treatment of Parkinson’s disease. Naunyn-Schmied Arch Pharmacol 379, 73–86 (2009). https://doi.org/10.1007/s00210-008-0341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0341-4

Keywords

Navigation