Skip to main content

Advertisement

Log in

Inhibition by oxytocin of methamphetamine-induced hyperactivity related to dopamine turnover in the mesolimbic region in mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Accumulated data have shown the neuroactive properties of oxytocin (OT), a neurohypophyseal neuropeptide, and its capability of reducing the abuse potential of drugs. The present study investigated the effect of OT on methamphetamine (MAP)-induced hyperactivity in mice and its possible mechanism of action. Locomotor activity was measured after administered with MAP using an infrared sensor. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) was used to detect the content of monoamines and their metabolites in the striatum and accumbens and prefrontal cortex in mice after the behavioral test. OT (0.1, 0.5, and 2.5 μg/mouse, i.c.v.) had no effect on locomotor activity in naïve mice, but inhibited, in a dose-dependent manner, the hyperactivity induced by acute administration of MAP. Atosiban (Ato) (2.0 μg/mouse, i.c.v.), the selective inhibitor of OT receptor, attenuated the inhibitory effect of OT on MAP. A marked reduction of the ratios of 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) to dopamine (DA) was observed in the striatum and accumbens of mice after acute administration of MAP. OT (2.5 μg, i.c.v.) significantly inhibited the reduction of DOPAC/DA and HVA/DA ratios. However, Ato decreased the ratio of DOPAC/DA significantly in mice compared with OT (2.5 μg) in combination with MAP. There was no significant change in serotonin (5-HT) metabolism in mice after a single administration of MAP. These results suggested that OT inhibited the MAP-induced hyperactivity by altering the DA turnover in the mesolimbic region of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Koyama T (1997) Effect of no synthesis inhibition on striatal dopamine release and stereotyped behavior induced by a single administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 21:831–838

    Article  PubMed  CAS  Google Scholar 

  • Amano T, Matsubayashi H, Sasa M (1996) Hypersensitivity of nucleus accumbens neurons to methamphetamine and dopamine following repeated administrations of methamphetamine. Ann N Y Acad Sci 801:136–147

    Article  PubMed  CAS  Google Scholar 

  • Armstrong BD, Noguchi KK (2004) The neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine on serotonin, dopamine, and GABA-ergic terminals: an in-vitro autoradiographic study in rats. Neurotoxicology 25:905–914

    Article  PubMed  CAS  Google Scholar 

  • Bennett BA, Hollingsworth CK, Martin RS, Harp JJ (1998) Methamphetamine-induced alterations in dopamine transporter function. Brain Res 782:219–227

    Article  PubMed  CAS  Google Scholar 

  • Broom SL, Yamamoto BK (2005) Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats. Psychopharmacology (Berl) 181:467–476

    Article  CAS  Google Scholar 

  • Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hökfelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Iverson SD (1973) Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res 55:369–382

    Article  PubMed  CAS  Google Scholar 

  • D’Astous M, Gajjar TM, Dluzen DE, Di Paolo T (2004) Dopamine transporter as a marker of neuroprotection in methamphetamine-lesioned mice treated acutely with estradiol. Neuroendocrinology 79:296–304

    Article  PubMed  CAS  Google Scholar 

  • Davidson C, Lee TH, Ellinwood EH (2005) Acute and chronic continuous methamphetamine have different long-term behavioral and neurochemical consequences. Neurochem Int 46:189–203

    Article  PubMed  CAS  Google Scholar 

  • De Kloet ER, Rotteveel F, Voorhuis TA, Terlou M (1985) Topography of binding sites for neurohypophyseal hormones in rat brain. Eur J Pharmacol 110:113–119

    Article  PubMed  Google Scholar 

  • Edwards S, Self DW (2006) Monogamy: dopamine ties the knot. Nat Neurosci 9:7–8

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1978) Drugs and reinforcement mechanisms: a critical review of the catecholamine theory. Annu Rev Pharmacol Toxicol 18:37–56

    Article  PubMed  CAS  Google Scholar 

  • Foote WE, Sheard MH, Aghajanian GK (1969) Comparison of effects of LSD and amphetamine on mid-brain raphe units. Nature 222:567–569

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier MJ, Stoeckel ME, Palacios JM, Pazos A, Reichhart JM, Porte A, Richard P (1987) Pharmacological characteristics and anatomical distribution of [3H]oxytocin-binding sites in the Wistar rat brain studied by autoradiography. Neuroscience 20:599–614

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier MJ, Stoeckel ME, Dietl MM, Palacios JM, Richard P (1988) Quantitative autoradiographic mapping of neurohypophysial hormone binding sites in the rat forebrain and pituitary gland: I. Characterization of different types of binding sites and their distribution in the Long-Evans strain. Neuroscience 26:261–272

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Ungerstedt U (1970) Histochemical studies on the effect of (positive)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. Eur J Pharmacol 2:135–144

    Google Scholar 

  • Ginawi OT, Al-Majed AA, Al-Suwailem AK (2005) NAN-190, a possible specific antagonist for methamphetamine. Regul Toxicol Pharmacol 41:122–127

    Article  PubMed  CAS  Google Scholar 

  • Hanson GR, Sandoval V, Riddle E, Fleckenstein AE (2004) Psychostimulants and vesicle trafficking: a novel mechanism and therapeutic implications. Ann N Y Acad Sci 1025:146–150

    Article  PubMed  CAS  Google Scholar 

  • Holmes JC, Rutledge CO (1976) Effects of the d- and l-isomers of amphetamine on uptake, release and catabolism of norepinephrine, dopamine and 5-hydroxytryptamine in several regions of rat brain. Biochem Pharmacol 25:447–451

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE (1996) Addiction to cocaine and amphetamine. Neuron 16:901–904

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Nishibori M, Oishi R, Saeki K (1984) Neuronal histamine inhibits methamphetamine-induced locomotor hyperactivity in mice. Neurosci Lett 48:305–309

    Article  PubMed  CAS  Google Scholar 

  • Izawa J, Yamanashi K, Asakura T, Misu Y, Goshima Y (2006) Differential effects of methamphetamine and cocaine on behavior and extracellular levels of dopamine and 3,4-dihydroxyphenylalanine in the nucleus accumbens of conscious rats. Eur J Pharmacol 549:84–90

    Article  PubMed  CAS  Google Scholar 

  • Kelly J, Alheid GF, Newberg A, Grossman SP (1977) GABA stimulation and blockade in the hypothalamus and midbrain: effects on feeding and locomotor activity. Pharmacol Biochem Behav 7:537–541

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Hong YT, Oh KW, Seong YH, Rheu HM, Cho DH, Oh S, Park WK, Jang CG (1998) Inhibition by ginsenosides Rb1 and Rg1 of methamphetamine-induced hyperactivity, conditioned place preference and postsynaptic dopamine receptor supersensitivity in mice. Gen Pharmacol 30:783–789

    PubMed  CAS  Google Scholar 

  • Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H (1992) Structure and expression of a human oxytocin receptor. Nature 356:526–529

    Article  PubMed  CAS  Google Scholar 

  • Kitanaka N, Kitanaka J, Takemura M (2003) Behavioral sensitization and alteration in monoamine metabolism in mice after single versus repeated methamphetamine administration. Eur J Pharmacol 474:63–70

    Article  PubMed  CAS  Google Scholar 

  • Koob GF (1992) Neural mechanisms of drug reinforcement. Ann N Y Acad Sci 654:171–191

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Caine SB, Parsons L, Markou A, Weiss F (1997) Opponent process model and psychostimulant addiction. Pharmacol Biochem Behav 57:513–521

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Telegdy G (1982) Role of oxytocin in memory and amnesia. Pharmacol Ther 18:375–395

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Telegdy G (1983) Effects of oxytocin, des-glycinamide-oxytocin and anti-oxytocin serum on the alpha-MPT-induced disappearance of catecholamines in the rat brain. Brain Res 268:307–314

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Telegdy G (1987) Beta-endorphin tolerance is inhibited by oxytocin. Pharmacol Biochem Behav 26:57–60

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Van Ree JM (1985) Behaviorally active oxytocin fragments simultaneously attenuate heroin self-administration and tolerance in rats. Life Sci 37:1895–1900

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Izbeki F, Horvath Z, Telegdy G (1984) Effects of oxytocin and a derivative (Z-prolyl-D-leucine) on morphine tolerance/withdrawal are mediated by the limbic system. Behav Brain Res 14:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Faludi M, Telegdy G (1985) Oxytocin diminishes heroin tolerance in mice. Psychopharmacology 86:377–379

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Szabo G, Sarnyai Z, Telegdy G (1987) Neurohypophyseal hormones and behavior. Prog Brain Res 72:109–118

    PubMed  CAS  Google Scholar 

  • Kovacs GL, Sarnyai Z, Barbarczi E, Szabo G, Telegdy G (1990) The role of oxytocin-dopamine interactions in cocaine-induced locomotor hyperactivity. Neuropharmacology 29:365–368

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, Sarnyai Z, Szabo G (1998) Oxytocin and addiction: a review. Psychoneuroendocrinology 23:945–962

    Article  PubMed  CAS  Google Scholar 

  • Krivan M, Szabo G, Sarnyai Z, Kovacs GL, Telegdy G (1992) Oxytocin blocks the development of heroin-enkephalin cross-tolerance in mice. Pharmacol Biochem Behav 43:187–192

    Article  PubMed  CAS  Google Scholar 

  • Krivan M, Szabo G, Sarnyai Z, Kovacs GL, Telegdy G (1995) Oxytocin blocks the development of heroin-fentanyl cross-tolerance in mice. Pharmacol Biochem Behav 52:591–594

    Article  PubMed  CAS  Google Scholar 

  • Murray JB (1998) Psychophysiological aspects of amphetamine-methamphetamine abuse. J Psychol 132:227–237

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Berhow MT, Brodkin ES (1996) Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol Psychiatry 1:190–199

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Mataga N, Takashima M, Toru M (1983) Behavioral sensitization and relative hyperresponsiveness of striatal and limbic dopaminergic neurons after repeated methamphetamine treatment. Eur J Pharmacol 88:195–203

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KB (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, USA

    Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    Article  PubMed  CAS  Google Scholar 

  • Przegalinski E, Filip M (1997) Stimulation of serotonin (5-HT)1A receptors attenuates the locomotor, but not the discriminative, effects of amphetamine and cocaine in rats. Behav Pharmacol 8:699–706

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Cone EJ, Kuhar MJ (1990) Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 46:635–645

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Sarnyai Z (1998) Oxytocin and neuroadaptation to cocaine. Prog Brain Res 119:449–466

    Article  PubMed  CAS  Google Scholar 

  • Sarnyai Z, Kovacs GL (1994) Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology 19:85–117

    Article  PubMed  CAS  Google Scholar 

  • Sarnyai Z, Babarczy E, Krivan M, Szabo G, Kovacs GL, Barth T, Telegdy G (1991) Selective attenuation of cocaine-induced stereotyped behaviour by oxytocin: putative role of basal forebrain target sites. Neuropeptides 19:51–56

    Article  PubMed  CAS  Google Scholar 

  • Schwarzberg H, Kovacs GL, Penke B, Telegdy G (1986) Effect of oxytocin on acute enkephalin tolerance in mice. Neuropeptides 7:247–250

    Article  PubMed  CAS  Google Scholar 

  • Seiden LS, Sabol KE, Ricuarte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    Article  PubMed  CAS  Google Scholar 

  • Shimosato K, Ohkuma S (2000) Simultaneous monitoring of conditioned place preference and locomotor sensitization following repeated administration of cocaine and methamphetamine. Pharmacol Biochem Behav 66:285–292

    Article  PubMed  CAS  Google Scholar 

  • Stewart J, Badiani A (1993) Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 4:289–312

    PubMed  CAS  Google Scholar 

  • Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535

    Article  PubMed  CAS  Google Scholar 

  • Tagliamonte A, Tagliamonte P, Perez-Cruet J, Stern S, Gessa GL (1971) Effect of psychotropic drugs on tryptophan concentration in the rat brain. J Pharmacol Exp Ther 177:475–480

    PubMed  CAS  Google Scholar 

  • Takigawa M, Wang H, Hamada K, Shiratani T, Takenouchi K (2000) Directed coherence of EEG on ICSS rats with methamphetamine-induced hyperactivity and stereotyped behavior. Ann N Y Acad Sci 914:311–315

    Article  PubMed  CAS  Google Scholar 

  • Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS (2007) A role for oxytocin and 5-HT1A receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience 146:509–514

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Schmidt ED, De Vries TJ, Van Moorsel CAP, Tilders FJH, Schoffelmeer ANM (1999) A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 19:9579–9586

    PubMed  CAS  Google Scholar 

  • Wise RA (1978) Catecholamine theories of reward: a critical review. Brain Res 152:215–247

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was partially supported by Outstanding Youth Fund of Liaoning province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Yang, JY., Song, M. et al. Inhibition by oxytocin of methamphetamine-induced hyperactivity related to dopamine turnover in the mesolimbic region in mice. Naunyn-Schmied Arch Pharmacol 376, 441–448 (2008). https://doi.org/10.1007/s00210-007-0245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0245-8

Keywords

Navigation