Skip to main content
Log in

Effects of receptor density on Nociceptin/OrphaninFQ peptide receptor desensitisation: studies using the ecdysone inducible expression system

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Pretreatment of the G-protein coupled nociceptin receptor (NOP) with nociceptin/orphaninFQ (N/OFQ) produces desensitisation. The influences of receptor expression and genomic effects are largely unknown. We have used an ecdysone-inducible NOP expression system in a CHO line (CHOINDhNOP) to examine the effects of N/OFQ pretreatment upon receptor density, GTPγ[35S] binding, cAMP formation and NOP-mRNA. CHOINDhNOP induced with 5 and 10 μM PonasteroneA (PonA) for 20 h produced NOP densities (B max) of 194 and 473 fmol. mg-1 protein, respectively. This was accompanied by decreased NOP mRNA. The lower B max is typical of the central nervous system. Pretreatment with 1 μM N/OFQ significantly (p < 0.05) reduced B max at 5 and 10 μM PonA to 100 and 196 fmol. mg-1 protein, respectively. There was no change in binding affinity. Along with the reduction in B max, potency and efficacy for N/OFQ-stimulated GTPγ[35S] binding were also reduced (5 μM PonA: pEC50-control = 8.55 ± 0.06, pretreated = 7.88 ± 0.07; E max-control = 3.52 ± 0.43, pretreated = 2.48 ± 0.10; 10 μM PonA: pEC50-control = 8.41 ± 0.18, pretreated = 7.76 ± 0.03; E max-control = 5.07 ± 0.17, pretreated = 3.38 ± 0.19). For inhibition of cAMP formation, there was a reduction in potency (5 μM PonA: pEC50-control = 9.78 ± 0.08, pretreated = 8.92 ± 0.13; 10 μM PonA: pEC50-control = 9.99 ± 0.07, pretreated = 9.04 ± 0.14), but there was no reduction in efficacy. In addition, there were 39 and 31% reductions in NOP mRNA at 5 and 10 μM PonA, respectively, but these measurements were made following concurrent N/OFQ challenge and PonA induction. In CHOINDhNOP, we have shown a reduction in cell surface receptor numbers and a reduction in functional coupling after N/OFQ pretreatment. This was observed at pseudo-physiological and supraphysiological receptor densities. Moreover, we also report a reduction in NOP mRNA, but further studies are needed which include ‘pulsing’ PonA and desensitizing following wash-out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andressen KW, Norum JH, Levy FO, Krobert KA (2006) Activation of adenylyl cyclase by endogenous G(s)-coupled receptors in human embryonic kidney 293 cells is attenuated by 5-HT(7) receptor expression. Mol Pharmacol 69:207–215

    PubMed  CAS  Google Scholar 

  • Bailey CP, Connor M (2005) Opioids: cellular mechanisms of tolerance and physical dependence. Curr Opin Pharmacol 5:60–68

    Article  PubMed  CAS  Google Scholar 

  • Calo G, Guerrini R, Rizzi A, Salvadri S, Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129:1261–1283

    Article  PubMed  CAS  Google Scholar 

  • Castelli MP, Melis M, Mameli M, Fadda P, Diaz G, Gessa GL (1997) Chronic morphine and naltrexone fail to modify mu-opioid receptor mRNA levels in the rat brain. Brain Res Mol Brain Res 45:149–153

    Article  PubMed  CAS  Google Scholar 

  • Chavkin C, McLaughlin JP, Celver JP (2001) Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol 60:20–25

    PubMed  CAS  Google Scholar 

  • Cheng ZJ, Fan GH, Zhao J, Zhang Z, Wu YL, Jiang LZ, Zhu Y, Pei G, Ma L (1997) Endogenous opioid receptor-like receptor in human neuroblastoma SK-N-SH cells: activation of inhibitory G protein and homologous desensitization. Neuroreport 8:1913–1918

    Article  PubMed  CAS  Google Scholar 

  • Connor M, Vaughan CW, Chieng B, Christie MJ (1996) Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br J Pharmacol 119:1614–1618

    PubMed  CAS  Google Scholar 

  • Connor M, Osborne PB, Christie MJ (2004) Mu-opioid receptor desensitization: is morphine different? Br J Pharmacol 143:685–696

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  PubMed  CAS  Google Scholar 

  • Gavioli EC, Calo G (2006) Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands. Naunyn. Schmiedebergs Arch Pharmacol 372:319–330

    Article  PubMed  CAS  Google Scholar 

  • Gintzler AR, Chakrabarti S (2006) Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules. Life Sci 79:717–722

    Article  PubMed  CAS  Google Scholar 

  • Hashiba E, Harrison C, Galo G, Guerrini R, Rowbotham DJ, Smith G, Lambert DG (2001) Characterisation and comparison of novel ligands for the nociceptin/orphanin FQ receptor. Naunyn. Schmiedebergs Arch Pharmacol 363:28–33

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Calo G, Guerrini R, Smith G, Lambert DG (2002) Effects of chronic nociceptin/orphanin FQ exposure on cAMP accumulation and receptor density in Chinese hamster ovary cells expressing human nociceptin/orphanin FQ receptors. Eur J Pharmacol 449:17–22

    Article  PubMed  CAS  Google Scholar 

  • Hawes BE, Graziano MP, Lambert DG (2000) Cellular actions of nociceptin: transduction mechanisms. Peptides 21:961–967

    Article  PubMed  CAS  Google Scholar 

  • Johnson EE, Chieng B, Napier I, Connor M (2006) Decreased mu-opioid receptor signalling and a reduction in calcium current density in sensory neurons from chronically morphine-treated mice. Br J Pharmacol 148:947–955

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Cheong YP, So HS, Lee KM, Son Y, Lee CS, Yun JS, Park R (2002) Regulation of cyclic AMP-dependent response element-binding protein (CREB) by the nociceptin/orphanin FQ in human dopaminergic SH-SY5Y cells. Biochem Biophys Res Commun 291:663–668

    Article  PubMed  CAS  Google Scholar 

  • Law PY, Kouhen OM, Solberg J, Wang W, Erickson LJ, Loh HH (2000) Deltorphin II-induced rapid desensitization of delta-opioid receptor requires both phosphorylation and internalization of the receptor. J Biol Chem 275:32057–32065

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Pei G (2007) Beta-arrestin signaling and regulation of transcription. J Cell Sci 120:213–218

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Cheng ZJ, Fan GH, Cai YC, Jiang LZ, Pei G (1997) Functional expression, activation and desensitization of opioid receptor-like receptor ORL1 in neuroblastoma x glioma NG108–15 hybrid cells. FEBS Lett 403:91–94

    Article  PubMed  CAS  Google Scholar 

  • Marie N, Aguila B, Allouche S (2006) Tracking the opioid receptors on the way of desensitization. Cell Signal 18:1815–1833

    Article  PubMed  CAS  Google Scholar 

  • McDonald J, Barnes TA, Okawa H, Williams J, Calo G, Rowbotham DJ, Lambert DG (2003) Partial agonist behaviour depends upon the level of nociceptin/orphanin FQ receptor expression: studies using the ecdysone-inducible mammalian expression system. Br J Pharmacol 140:61–70

    Article  PubMed  CAS  Google Scholar 

  • Meunier J (2000) The potential therapeutic value of nociceptin receptor agonists and antagonists. Exp Opin Ther Patents 10:371–388

    Article  CAS  Google Scholar 

  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415

    PubMed  CAS  Google Scholar 

  • Morikawa H, Fukuda K, Mima H, Shoda T, Kato S, Mori K (1998) Nociceptin receptor-mediated Ca2+ channel inhibition and its desensitization in NG108–15 cells. Eur J Pharmacol 351:247–252

    Article  PubMed  CAS  Google Scholar 

  • New DC, Wong YH (2002) The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neurosignals 11:197–212

    Article  PubMed  CAS  Google Scholar 

  • No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 93:3346–3351

    Article  PubMed  CAS  Google Scholar 

  • Oehme I, Bosser S, Zornig M (2006) Agonists of an ecdysone-inducible mammalian expression system inhibit Fas Ligand- and TRAIL-induced apoptosis in the human colon carcinoma cell line RKO. Cell Death Differ 13:189–201

    Article  PubMed  CAS  Google Scholar 

  • Okawa H, Hirst RA, Smart D, McKnight AT, Lambert DG (1998) Rat central ORL-1 receptor uncouples from adenylyl cyclase during membrane preparation. Neurosci Lett 246:49–52

    Article  PubMed  CAS  Google Scholar 

  • Pei G, Ling K, Pu L, Cunningham MD, Ma L (1997) Nociceptin/orphanin FQ stimulates extracellular acidification and desensitization of the response involves protein kinase C. FEBS Lett 412:253–256

    Article  PubMed  CAS  Google Scholar 

  • Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794

    Article  PubMed  CAS  Google Scholar 

  • Spampinato S, Di Toro R, Qasem AR (2001) Nociceptin-induced internalization of the ORL1 receptor in human neuroblastoma cells. Neuroreport 12:3159–3163

    Article  PubMed  CAS  Google Scholar 

  • Spampinato S, Baiula M, Calienni M (2007) Agonist-regulated internalization and desensitization of the human nociceptin receptor expressed in CHO cells. Curr Drug Targets 8:137–146

    Article  PubMed  CAS  Google Scholar 

  • Thakker DR, Standifer KM (2002) Induction of G protein-coupled receptor kinases 2 and 3 contributes to the cross-talk between mu and ORL1 receptors following prolonged agonist exposure. Neuropharmacology 43:979–990

    Article  PubMed  CAS  Google Scholar 

  • Violin JD, Dewire SM, Barnes WG, Lefkowitz RJ (2006) G protein-coupled receptor kinase and beta-arrestin-mediated desensitization of the angiotensin II type 1A receptor elucidated by diacylglycerol dynamics. J Biol Chem 281:36411–36419

    Article  PubMed  CAS  Google Scholar 

  • Wu EH, Lo RK, Wong YH (2003) Regulation of STAT3 activity by G16-coupled receptors. Biochem Biophys Res Commun 303:920–925

    Article  PubMed  CAS  Google Scholar 

  • Zeilhofer HU, Calo G (2003) Nociceptin/orphanin FQ and its receptor–potential targets for pain therapy? J Pharmacol Exp Ther 306:423–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by British Journal of Anaesthesia/Royal College of Anaesthetists and UHL-NHS Trust. We would like to thank Drs. G. Calo and R. Guerrini (University of Ferrara, Italy) for providing N/OFQ.

Conflict of interest stament

We have no conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Lambert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, T.A., McDonald, J., Rowbotham, D.J. et al. Effects of receptor density on Nociceptin/OrphaninFQ peptide receptor desensitisation: studies using the ecdysone inducible expression system. Naunyn-Schmied Arch Pharmacol 376, 217–225 (2007). https://doi.org/10.1007/s00210-007-0189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0189-z

Keywords

Navigation