Skip to main content
Log in

Effect of antipsychotics on succinate dehydrogenase and cytochrome oxidase activities in rat brain

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Typical and atypical antipsychotic drugs have been shown to have different clinical, biochemical, and behavioral profiles. It is well described that impairment of metabolism, especially in the mitochondria, leads to oxidative stress and neuronal death and has been implicated in the pathogenesis of a number of diseases in the brain. Considering that some effects of chronic use of antipsychotic drugs are still not well known and that succinate dehydrogenase (SDH) and cytochrome oxidase (COX) are crucial enzymes of mitochondria, in this work, we evaluated the activities of these enzymes in rat brain after haloperidol, clozapine, olanzapine, or aripiprazole chronic administration. Adult male Wistar rats received daily injections of haloperidol (1.5 mg/kg), clozapine (25 mg/kg), olanzapine (2.5, 5, or 10 mg/kg), or aripiprazole (2, 10 or 20 mg/kg) for 28 days. We verified that COX was not altered by any drug tested. Moreover, our results demonstrated that the atypical antipsychotic olanzapine inhibited SDH in the cerebellum and aripiprazole increased the enzyme in the prefrontal cortex. We also observed that haloperidol inhibited SDH in the striatum and hippocampus, whereas clozapine inhibited the enzyme only in the striatum. These results showed that antipsychotic drugs altered SDH activity but not COX. In this context, haloperidol, olanzapine, and clozapine may impair energy metabolism in some brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert KA, Hemmings HC, Adamo AI et al (2002) Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 59:705–712

    Article  PubMed  CAS  Google Scholar 

  • Andreassen OA, Ferrante RJ, Beal MF et al (1998) Oral dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid. Neuroscience 87:639–648

    Article  PubMed  CAS  Google Scholar 

  • Angelucci F, Mathe AA, Aloe L (2004a) Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Prog Brain Res 146:151–165

    Article  PubMed  CAS  Google Scholar 

  • Angelucci F, Oliviero A, Pilato F et al (2004b) Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis. Neuroreport 15:717–720

    Article  PubMed  Google Scholar 

  • Arnaiz SL, Coronel MF, Boveris A (1999) Nitric oxide, superoxide and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric Oxide 3:235–243

    Article  PubMed  CAS  Google Scholar 

  • Assis LC, Scaini G, Di-Pietro PB et al (2007) Effect of antipsychotics on creatine kinase activity in rat brain. Basic Clin Pharmacol Toxicol (in press)

  • Balijepalli S, Kenchappa RS, Boyd MR et al (2001) Protein thiol oxidation by haloperidol results in inhibition of mitochondrial complex I in brain regions: comparison with atypical antipsychotics. Neurochem Int 38:425–435

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurological illnesses? Ann Neurol 31:119–130

    Article  PubMed  CAS  Google Scholar 

  • Beuzen JN, Taylor N, Wesnes K et al (1999) A comparison of the effects of olanzapine, haloperidol and placebo on cognitive and psychomotor functions in healthy elderly volunteers. J Psychopharmacol 13:152–158

    PubMed  CAS  Google Scholar 

  • Bilder RM, Goldman RS, Volavka J et al (2002) Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry 159:1018–1028

    Article  PubMed  Google Scholar 

  • Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia. J Neurosci Res 66:851–856

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphosrylation system. J Biol Chem 282:1–4

    Article  PubMed  CAS  Google Scholar 

  • Brennan WA, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44: 1948–1950

    Article  PubMed  CAS  Google Scholar 

  • Buckley PF (2001) Broad therapeutic uses of atypical antipsychotic medications. Biol Psychiatry 50:912–924

    Article  PubMed  CAS  Google Scholar 

  • Burger ME, Fachinetto R, Zeni G et al (2005) Ebselen attenuates haloperidol-induced orofacial dyskinesia and oxidative stress in rat brain. Pharmacol Biochem Behav 81:608–615

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Lohr JB (1989) Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E. Ann NY Acad Sci 570:176–185

    Article  PubMed  CAS  Google Scholar 

  • Carlson CD, Cavazzoni PA, Berg PH et al (2003) An integrated analysis of acute treatment-emergent extrapyramidal syndrome in patients with schizophrenia during olanzapine clinical trials: comparisons with placebo, haloperidol, risperidone, or clozapine. J Clin Psychiatry 64:898–906

    Article  PubMed  CAS  Google Scholar 

  • Casademont J, Rodriguez-Santiago B, Miro O et al (2005) Mitochondrial respiratory chain in brain homogenates: activities in different brain areas in patients with Alzheimer’s disease. Aging Clin Exp Res 1:1–7

    Google Scholar 

  • Corrêa C, Amboni G, Assis LC et al (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 31:887–891

    Article  PubMed  CAS  Google Scholar 

  • Desmond JE, Fiez JA (1998) Neuroimaging studies of the cerebellum: language, learning, and memory. Trends Cogn Sci 2:355–362

    Article  Google Scholar 

  • Deutch AY, Moghaddam B, Innis RB et al (1991) Mechanisms of action of atypical antipsychotic drugs: Implications for novel therapeutic strategies for schizophrenia. Schizophr Res 4:121–156

    Article  PubMed  CAS  Google Scholar 

  • Dixon LB, Lehman AF, Levine J (1995) Conventional antipsychotic medications for schizophrenia. Schizophr Bull 21:567–577

    PubMed  CAS  Google Scholar 

  • Duman RS (2002a) Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry 17(Suppl 3):306–310

    Article  PubMed  Google Scholar 

  • Duman RS (2002b) Synaptic plasticity and mood disorders. Mol Psychiatry 7(Suppl 1):S29–S34

    PubMed  Google Scholar 

  • Ellis CE, Murphy EJ, Mitchell DC et al (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein. Mol Cell Biol 22:10190–10201

    Article  CAS  Google Scholar 

  • Fatemi SH, Laurence JA, Araghi-Niknam M et al (2004) Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res 69:317–323

    Article  PubMed  Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26

    Article  PubMed  CAS  Google Scholar 

  • France-Lanord V, Brugg B, Michel PP et al (1997) Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson’s disease. J Neurochem 4:1612–1621

    Google Scholar 

  • Halliwell B (1996) Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027

    PubMed  CAS  Google Scholar 

  • Heales SJ, Bolaños JP, Stewart VC et al (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  • Jordan S, Koprivica V, Chen R et al (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441:137–140

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Remington G (2001) Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Annu Rev Med 52:503–517

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190

    Article  PubMed  CAS  Google Scholar 

  • Keeney PM, Xie J, Capaldi RA et al (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 19:5256–5264

    Article  CAS  Google Scholar 

  • Konradi C, Eaton M, MacDonald ML et al (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  PubMed  CAS  Google Scholar 

  • Lohr JB, Cadet JL, Lohr MA et al (1988) Vitamin E in the treatment of tardive dyskinesia: the possible involvement of free radical mechanisms. Schizophr Bull 14:291–296

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Machado-Vieira R, Lara DR, Portela LV et al (2002) Elevated serum S100B protein in drug-free bipolar patients during first manic episode: a pilot study. Eur Neuropsychopharmacol 12:269–272

    Article  PubMed  CAS  Google Scholar 

  • Mahadik SP, Mukherjee S (1996) Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res 19:1–17

    Article  PubMed  CAS  Google Scholar 

  • Mahadik SP, Laev H, Korenovsky A et al (1988) Haloperidol alters rat CNS cholinergic system: enzymatic and morphological analyses. Biol Psychiatry 24:199–217

    Article  PubMed  CAS  Google Scholar 

  • Maurer I, Möller HJ (1997) Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem 174:255–259

    Article  PubMed  CAS  Google Scholar 

  • Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37:43–51

    Article  PubMed  Google Scholar 

  • Parikh V, Terry AV, Khan MM (2004) Modulation of nerve growth factor and choline acetyltransferase expression in rat hippocampus after chronic exposure to haloperidol, risperidone, and olanzapine. Psychopharmacology (Berl) 172:365–374

    Article  CAS  Google Scholar 

  • Peet M, Laugharne J, Rangarajan N (1993) Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol 8:151–153

    Article  PubMed  CAS  Google Scholar 

  • Polydoro M, Schröder N, Lima MN et al (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 78:751–756

    Article  PubMed  CAS  Google Scholar 

  • Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697

    Article  PubMed  CAS  Google Scholar 

  • Prince JA, Yassin MS, Oreland L (1997) Neuroleptic-induced mitochondrial enzyme alterations in the rat brain. J Pharmacol Exp Ther 280:261–267

    PubMed  CAS  Google Scholar 

  • Prince JA, Yassin MS, Oreland L (1998) A histochemical demonstration of altered cytochrome oxidase activity in the rat brain by neuroleptics. Eur Neuropsychopharmacol 8:1–6

    Article  PubMed  CAS  Google Scholar 

  • Reinke A, Martins MR, Lima MS et al (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372:157–160

    Article  PubMed  CAS  Google Scholar 

  • Rizzardini M, Lupi M, Mangolini A et al (2006) Neurodegeneration induced by complex I inhibition in a cellular model of familial amyotrophic lateral sclerosis. Brain Res Bull 4:465–474

    Article  CAS  Google Scholar 

  • Rothermundt M, Missler U, Arolt V et al (2001) Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry 6:445–449

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Ponath G, Arolt V (2004) S100B in schizophrenic psychosis. Int Rev Neurobiol 59:445–470

    Article  PubMed  CAS  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  • Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Schroeter ML, Abdul-Khaliq H, Diefenbacher A et al (2002) S100B is increased in mood disorders and may be reduced by antidepressive treatment. Neuroreport 13:1675–1678

    Article  PubMed  CAS  Google Scholar 

  • Schroeter ML, Abdul-Khaliq H, Fruhauf S et al (2003) Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr Res 62:231–236

    Article  PubMed  Google Scholar 

  • Schurr A (2002) Energy metabolism, stress hormones and neural recovery from cerebral ischemia/hypoxia. Neurochem Int 41:1–8

    Article  PubMed  CAS  Google Scholar 

  • Shang T, Kotamraju S, Kalivendi SV et al (2004) 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. J Biol Chem 18:19099–19112

    Article  CAS  Google Scholar 

  • Sharma T, Mockler D (1998) The cognitive efficacy of atypical antipsychotics in schizophrenia. J Clin Psychopharmacol 18:12–19

    Article  Google Scholar 

  • Sullivan PG, Dragicevic NB, Deng JH et al (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 20:20699–20707

    Article  CAS  Google Scholar 

  • Terry AV, Hill WD, Parikh V et al (2002) Differential effects of chronic haloperidol and olanzapine exposure on brain cholinergic markers and spatial learning in rats. Psychopharmacology 164:360–368

    Article  PubMed  CAS  Google Scholar 

  • Terry AV, Hill WD, Parikh V et al (2003) Differential effects of haloperidol, risperidone and clozapine exposure on cholinergic markers and spatial learning performance in rats. Neuropsychopharmacology 28:300–309

    Article  PubMed  CAS  Google Scholar 

  • Tollefson GD, Beasley CM Jr, Tamura RN et al (1997) Blind, controlled, long-term study of the comparative incidence of treatment-emergent tardive dyskinesia with olanzapine or haloperidol. Am J Psychiatry 154:1248–1254

    PubMed  CAS  Google Scholar 

  • Velligan DI, Newcomer J, Pultz J et al (2002) Does cognitive function improve with quetiapine in comparison to haloperidol. Schizophr Res 53:239–248

    Article  PubMed  Google Scholar 

  • Vilner BJ, Costa BR, Bowen WD (1995) Cytotoxic effects of sigma ligants: sigma receptor mediated alteration in cellular morphology and viability. J Neurosci 15:117–134

    PubMed  CAS  Google Scholar 

  • Weis S, Llenos IC (2004) GFAP-immunopositive astrocytes in schizophrenia. Schizophr Res 67:293–295

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Eli Lilly do Brazil, Universidade do Extremo Sul Catarinense (UNESC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streck, E.L., Rezin, G.T., Barbosa, L.M. et al. Effect of antipsychotics on succinate dehydrogenase and cytochrome oxidase activities in rat brain. Naunyn-Schmied Arch Pharmacol 376, 127–133 (2007). https://doi.org/10.1007/s00210-007-0178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0178-2

Keywords

Navigation