Skip to main content
Log in

Lipid-lowering actions of imidazoline antihypertensive agents in metabolic syndrome X

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Agonists active at I1-imidazoline receptors (I1R) not only lower blood pressure but also ameliorate glucose intolerance, insulin resistance, and hyperlipidemia with long-term treatment. We sought to determine the possible mechanism for the lipid-lowering actions of imidazolines in a model of metabolic Syndrome X, the spontaneously-hypertensive obese (SHROB) rat. The acute actions of moxonidine and rilmenidine, selective I1R agonists, were compared to a specific α2-adrenergic receptor agonist, guanabenz, with and without selective receptor blockers. Moxonidine and rilmenidine rapidly reduced plasma triglyceride (20±4% and 21±5%, respectively) and cholesterol (29±9% and 27±9%). In contrast, the specific α2-adrenergic receptor agonist guanabenz failed to reduce plasma lipids. Blocking experiments showed that moxonidine’s actions were mediated by I1R and not α2-adrenergic receptors. To evaluate a hepatic site of action, radioligand binding studies with liver plasma membranes confirmed the presence of I1R. Intraportal moxonidine reduced plasma triglycerides by 23±3% within 10 min. Moxonidine inhibited hepatic triglyceride secretion by 75% compared to vehicle treatment. Tracer studies with 2H2O suggested that moxonidine inhibits de novo fatty acid synthesis. Thus, activation of I1R lowers plasma lipids, with the main site of action probably within the liver to reduce synthesis and secretion of triglycerides. More selective I1R agonists might provide monotherapy for hyperlipidemic hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ames RP (1986) The effects of antihypertensive drugs on serum lipids and lipoproteins. II. Non-diuretic drugs. Drugs 32:335–357

    Article  PubMed  CAS  Google Scholar 

  • Anichkov DA, Shostak NA (2004) Effect of moxonidine on parameters of lipid metabolism in patients with metabolic syndrome. Kardiologiia 44:13–15

    PubMed  CAS  Google Scholar 

  • Anichkov DA, Shostak NA, Schastnaya OV (2005) Comparison of rilmenidine and lisinopril on ambulatory blood pressure and plasma lipid and glucose levels in hypertensive women with metabolic syndrome. Curr Med Res Opin 21:113–119

    Article  PubMed  CAS  Google Scholar 

  • Brook RD (2000) Mechanism of differential effects of antihypertensive agents on serum lipids. Curr Hypertens Rep 2:370–377

    Article  PubMed  CAS  Google Scholar 

  • Brunengraber DZ, McCabe BJ, Kasumov T, Alexander JC, Chandramouli V, Previs SF (2003) Influence of diet on the modeling of adipose tissue triglycerides during growth. Am J Physiol Endocrinol Metab 285:E917–E925

    PubMed  CAS  Google Scholar 

  • Brunengraber DZ, McCabe BJ, Katanik J, Previs SF (2002) Gas chromatography-mass spectrometry assay of the (18)O enrichment of water as trimethyl phosphate. Anal Biochem 306:278–282

    Article  PubMed  CAS  Google Scholar 

  • Capuzzi DM, Cevallos WH (1984) Inhibition of hepatic cholesterol and triglyceride synthesis by guanabenz acetate. J Cardiovasc Pharmacol 6(Suppl 5):S847–S852

    Article  PubMed  Google Scholar 

  • Carpene C, Galitzky J, Larrouy D, Langin D, Lafontan M (1990) Non-adrenergic sites for imidazolines are not directly involved in the alpha 2-adrenergic antilipolytic effect of UK 14304 in rat adipocytes. Biochem Pharmacol 40:437–445

    Article  PubMed  CAS  Google Scholar 

  • Carpene C, Marti L, Hudson A, Lafontan M (1995) Nonadrenergic imidazoline binding sites and amine oxidase activities in fat cells. Ann N Y Acad Sci 763:380–397

    Article  PubMed  CAS  Google Scholar 

  • Chan SL, Mourtada M, Morgan NG (2001) Characterization of a KATP channel-independent pathway involved in potentiation of insulin secretion by efaroxan. Diabetes 50:340–347

    Article  PubMed  CAS  Google Scholar 

  • Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, Wiltse C, Wright TJ (2003) Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail 5:659–667

    Article  PubMed  CAS  Google Scholar 

  • Cussac D, Schaak S, Denis C, Flordellis C, Calise D, Paris H (2001) High level of alpha2-adrenoceptor in rat foetal liver and placenta is due to alpha2B-subtype expression in haematopoietic cells of the erythrocyte lineage. Br J Pharmacol 133:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • De Luca N, Izzo R, Fontana D, Iovino G, Argenziano L, Vecchione C, Trimarco B (2000) Haemodynamic and metabolic effects of rilmenidine in hypertensive patients with metabolic syndrome X. A double-blind parallel study versus amlodipine. J Hypertens 18:1515–1522

    Article  PubMed  Google Scholar 

  • Efendic S, Efanov AM, Berggren PO, Zaitsev SV (2002) Two generations of insulinotropic imidazoline compounds. Diabetes 51(Suppl 3):S448–S454

    Article  PubMed  CAS  Google Scholar 

  • Elliott HL (1998) Moxonidine: pharmacology, clinical pharmacology and clinical profile. Blood Press Suppl 3:23–27

    Article  Google Scholar 

  • Ernsberger P, Friedman JE, Koletsky RJ (1997) The I(1)-imidazoline receptor: From binding site to therapeutic target in cardiovascular disease. J Hypertens 15(Suppl 1):S9–S23

    CAS  Google Scholar 

  • Ernsberger P, Ishizuka T, Liu S, Farrell CJ, Bedol D, Koletsky RJ, Friedman JE (1999a) Mechanisms of antihyperglycemic effects of moxonidine in the obese spontaneously hypertensive Koletsky rat (SHROB). J Pharmacol Exp Ther 288:139–147

    PubMed  CAS  Google Scholar 

  • Ernsberger P, Koletsky RJ, Friedman JE (1999b) Molecular pathology in the obese spontaneous hypertensive Koletsky rat: a model of syndrome X. Ann N Y Acad Sci 892:272–288

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger P, Koletsky RJ, Collins LA, Bedol DL (1996) Sympathetic nervous system in salt-sensitive and obese hypertension: Amelioration of multiple abnormalities by a central symaptholytic agent. Cardiovasc Drugs Ther 10:275–282

    Article  PubMed  Google Scholar 

  • Ernsberger P, Koletsky RJ, Friedman JE (1998) Contribution of sympathetic nervous system overactivity to cardiovascular and metabolic disease. Rev Contemp Pharmacother 9:411–428

    Google Scholar 

  • Ernsberger P, Piletz JE, Graff LM, Graves ME (1995) Optimization of radioligand binding assays for I1-imidazoline sites. Ann N Y Acad Sci 763:163–168

    Article  PubMed  CAS  Google Scholar 

  • Esler M, Kaye D (1998) Increased sympathetic nervous system activity and its therapeutic reduction in arterial hypertension, portal hypertension and heart failure. J Auton Nerv Syst 72:210–219

    Article  PubMed  CAS  Google Scholar 

  • Friedman JE, Ishizuka T, Liu S, Farrell CJ, Koletsky RJ, Bedol D, Ernsberger P (1998) Anti-hyperglycemic activity of moxonidine: metabolic and molecular effects in obese spontaneously hypertensive rats. Blood Press Suppl 3:32–39

    Article  Google Scholar 

  • Haenni A, Lithell H (1999) Moxonidine improves insulin sensitivity in insulin-resistant hypertensives. J Hypertens 17(Suppl 3):S29–S35

    CAS  Google Scholar 

  • Haxhiu MA, Dreshaj IA, Erokwu B, Collins LA, Ernsberger P (1995) Effect of I1-imidazoline receptor activation on responses of hypoglossal and phrenic nerve to chemical stimulation. Ann N Y Acad Sci 763:445–462

    Article  PubMed  CAS  Google Scholar 

  • He MM, Abraham TL, Lindsay TJ, Chay SH, Czeskis BA, Shipley LA (2000) Metabolism and disposition of moxonidine in Fischer 344 rats. Drug Metab Dispos 28:446–459

    PubMed  CAS  Google Scholar 

  • Henriksen EJ, Jacob S, Fogt DL, Youngblood EB, Gödicke J (1997) Antihypertensive agent moxonidine enhances muscle glucose transport in insulin-resistant rats. Hypertension 30:1560–1565

    PubMed  CAS  Google Scholar 

  • Jacob S, Klimm HJ, Rett K, Helsberg K, Haring HU, Godicke J (2004) Effects of moxonidine vs. metoprolol on blood pressure and metabolic control in hypertensive subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 112:315–322

    Article  PubMed  CAS  Google Scholar 

  • Lindholm LH, Persson M, Alaupovic P, Carlberg B, Svensson A, Samuelsson O (2003) Metabolic outcome during 1 year in newly detected hypertensives: results of the Antihypertensive Treatment and Lipid Profile in a North of Sweden Efficacy Evaluation (ALPINE study). J Hypertens 21:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Lumb PJ, McMahon Z, Chik G, Wierzbicki AS (2004) Effect of moxonidine on lipid subfractions in patients with hypertension. Int J Clin Pract 58:465–468

    Article  PubMed  CAS  Google Scholar 

  • Meacham RH, Ruelius HW, Kick CJ, Peters JR, Kocmund SM, Sisenwine SF, Wendt RL (1980) Relationship of guanabenz concentrations in brain and plasma to antihypertensive effect in the spontaneously hypertensive rat. J Pharmacol Exp Ther 214:594–598

    PubMed  CAS  Google Scholar 

  • Penicaud L, Berthault MF, Morin J, Dubar M, Ktorza A, Ferre P (1998) Rilmenidine normalizes fructose-induced insulin resistance and hypertension in rats. J Hypertens Suppl 16:S45–S49

    Article  PubMed  CAS  Google Scholar 

  • Piletz JE, Jones JC, Zhu H, Bishara O, Ernsberger P (1999) Imidazoline receptor antisera-selected cDNA clone and mRNA distribution. Ann N Y Acad Sci 881:1–7

    Article  PubMed  CAS  Google Scholar 

  • Piletz JE, Zhu H, Chikkala DN (1996) Comparison of ligand binding affinities at human I1- imidazoline binding sites and the high affinity state of alpha-2 adrenoceptor subtypes. J Pharmacol Exp Ther 279:694–702

    PubMed  CAS  Google Scholar 

  • Prichard BN, Graham BR (2000) I1 imidazoline agonists. General clinical pharmacology of imidazoline receptors: implications for the treatment of the elderly. Drugs Aging 17:133–159

    Article  PubMed  CAS  Google Scholar 

  • Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Remaury A, Ordener C, Shih J, Parini A (1999) Relationship between I2 imidazoline binding sites and monoamine oxidase B in liver. Ann N Y Acad Sci 881:32–34

    Article  PubMed  CAS  Google Scholar 

  • Rosen P, Ohly P, Gleichmann H (1997) Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rat. J Hypertens 15(Suppl 1):S31–S38

    CAS  Google Scholar 

  • Sawyer R, Warnock P, Docherty JR (1985) Role of vascular alpha 2-adrenoceptors as targets for circulating catecholamines in the maintenance of blood pressure in anaesthetised spontaneously hypertensive rats. J Cardiovasc Pharmacol 7:809–812

    Article  PubMed  CAS  Google Scholar 

  • Schachter M (1999) Moxonidine: a review of safety and tolerability after seven years of clinical experience. J Hypertens 17(Suppl 3):S37–S39

    CAS  Google Scholar 

  • Schachter M, Luszick J, Jager B, Verboom C, Sohlke E (1998) Safety and tolerability of moxonidine in the treatment of hypertension. Drug Saf 19:191–203

    Article  PubMed  CAS  Google Scholar 

  • Separovic D, Kester M, Ernsberger P (1996) Coupling of I1-imidazoline receptors to diacylglyceride accumulation in PC12 rat pheochromocytoma cells. Mol Pharmacol 49:668–675

    PubMed  CAS  Google Scholar 

  • Swift LL, Valyi-Nagy K, Rowland C, Harris C (2001) Assembly of very low density lipoproteins in mouse liver: evidence of heterogeneity of particle density in the Golgi apparatus. J Lipid Res 42:218–224

    PubMed  CAS  Google Scholar 

  • Szabo B (2002) Imidazoline antihypertensive drugs: a critical review on their mechanism of action. Pharmacol Ther 93:1–35

    Article  PubMed  CAS  Google Scholar 

  • Tan CM, Wilson MH, MacMillan LB, Kobilka BK, Limbird LE (2002) Heterozygous alpha 2A-adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. Proc Natl Acad Sci U S A 99:12471–12476

    Article  PubMed  CAS  Google Scholar 

  • Tolentino-Silva FP, Haxhiu MA, Waldbaum S, Dreshaj IA, Ernsberger P (2000) α2A-adrenergic receptors are not required for central anti- hypertensive action of moxonidine in mice. Brain Res 862:26–35

    Article  PubMed  CAS  Google Scholar 

  • U.K.Working Party on Rilmenidine (1990) Rilmenidine in mild to moderate essential hypertension: A double-blind, randomized, parallel-group, multicenter comparison with methyldopa in 157 patients. Curr Ther Res 47:194–210

    Google Scholar 

  • Velliquette RA, Ernsberger P (2003a) Contrasting metabolic effects of antihypertensive agents. J Pharmacol Exp Ther 307:1104–1111

    Article  PubMed  CAS  Google Scholar 

  • Velliquette RA, Ernsberger P (2003b) The role of I(1)-imidazoline and alpha(2)-adrenergic receptors in the modulation of glucose metabolism in the spontaneously hypertensive obese rat model of metabolic syndrome X. J Pharmacol Exp Ther 306:646–657

    Article  PubMed  CAS  Google Scholar 

  • Venteclef N, Guillard R, Issandou M (2005) The imidazoline-like drug S23515 affects lipid metabolism in hepatocyte by inhibiting the oxidosqualene:lanosterol cyclase activity. Biochem Pharmacol 69:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Webster J, Koch HF (1996) Aspects of tolerability of centrally acting antihypertensive drugs. J Cardiovasc Pharmacol 27(Suppl 3):S49–S54

    PubMed  CAS  Google Scholar 

  • Weimann H-J, Rudolph M (1992) Clinical pharmacokinetics of moxonidine. J Cardiovasc Pharmacol 20(Suppl 4):S37–S41

    Article  Google Scholar 

  • Yakubu-Madus FE, Johnson WT, Zimmerman KM, Dananberg J, Steinberg MI (1999) Metabolic and hemodynamic effects of moxonidine in the Zucker diabetic fatty rat model of type 2 diabetes. Diabetes 48:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Zaitsev SV, Efanov AM, Efanova IB, Larsson O, Östenson CG, Gold G, Berggren PO, Efendic S (1996) Imidazoline compounds stimulate insulin release by inhibition of KATP channels and interaction with the exocytotic machinery. Diabetes 45:1610–1618

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Yang S, Koo DJ, Ornan DA, Chaudry IH, Wang P (2001) The role of Kupffer cell alpha(2)-adrenoceptors in norepinephrine-induced TNF-alpha production. Biochim Biophys Acta 1537:49–57

    PubMed  CAS  Google Scholar 

  • Zhu QM, Lesnick JD, Jasper JR, MacLennan SJ, Dillon MP, Eglen RM, Blue DR, Jr. (1999) Cardiovascular effects of rilmenidine, moxonidine and clonidine in conscious wild-type and D79N alpha2A-adrenoceptor transgenic mice. Br J Pharmacol 126:1522–1530

    Article  PubMed  CAS  Google Scholar 

  • Zonnenchein R, Diamant S, Atlas D (1990) Imidazoline receptors in rat liver cells: a novel receptor or a subtype of alpha 2-adrenoceptors? Eur J Pharmacol 190:203–215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Anthony DiVito and Janean Johnson, B.S. for their technical assistance. Supported by HL44514 from the NIH and the Mount Sinai Health Care Foundation of Cleveland. Preliminary studies were partly supported by a grant from Solvay Pharmaceuticals, Hannover, Germany.

Submitted in partial fulfillment of the requirements for a doctorate in Nutrition from Case Western Reserve University School of Medicine to R.A.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ernsberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velliquette, R.A., Kossover, R., Previs, S.F. et al. Lipid-lowering actions of imidazoline antihypertensive agents in metabolic syndrome X. Naunyn Schmied Arch Pharmacol 372, 300–312 (2006). https://doi.org/10.1007/s00210-005-0024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-005-0024-3

Keywords

Navigation