Skip to main content
Log in

Involvement of the sympathetic nervous system in the reversal of critical haemorrhagic hypotension by endogenous central histamine in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

An increase in endogenous central histamine concentration after inhibition of histamine N-methyltransferase (HNMT) activity reverses critical hypotension and improves the survival of rats in haemorrhagic shock. The purpose of the study was to examine the involvement of the sympathetic nervous system in this endogenous central histamine-induced resuscitation.

Experiments were carried out in ethylurethane-anaesthetised male Wistar rats subjected to haemorrhagic hypotension (mean arterial pressure MAP 20–25 mmHg), which led to the death of all control animals within 30 min. The HNMT inhibitor metoprine (20 µg; i.c.v.) administered 5 min after establishing the critical hypotension increased the endogenous histamine concentration, measured 20 min after treatment, in the hypothalamus (534.33±67.52 vs. 423.98±54.17 ng/g wet tissue; P<0.05) and medulla oblongata (53.12±9.78 vs. 39.58±11.16 ng/g wet tissue; P<0.05). These responses were accompanied by plasma levels of noradrenaline and adrenaline 2.7 and 1.7 times higher respectively than in the control group (P<0.01). Metoprine evoked dose-dependent (5, 10, 20 µg; i.c.v.) rises in MAP and heart rate (HR) that were significantly higher than those in normotensive animals, and resulted in a 100% survival rate at 2 h after treatment (20 µg; i.c.v.). The resuscitative effect was associated with rises in renal, hindquarters and mesenteric blood flows. The nicotinic cholinoceptor antagonist hexamethonium (3 mg/kg; i.v.) attenuated the MAP and HR changes, whereas the muscarinic cholinoceptor blocker methylatropine (2 mg/kg; i.v.) attenuated only the pressor effect. Metoprine-induced MAP and regional haemodynamic effects were also reduced by α1- and α2-adrenoceptor antagonists prazosin (0.5 mg/kg; i.v.) and yohimbine (1 mg/kg; i.v.), while the β-adrenoceptor blocker propranolol (1 mg/kg; i.v.) diminished only HR changes. Ganglionic transmission inhibitors and adrenoceptor antagonists did not influence the survival rate at 2 h in the metoprine-treated groups. Bilateral adrenal demedullation diminished the pressor effect of metoprine, however, without influence on HR and survival at 2 h after treatment.

In conclusion, the study demonstrates the activation of the sympathetic nervous system elicited by endogenous central histamine in haemorrhage-shocked rats and confirms its involvement in histamine-induced resuscitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akins VF, Bealer SL (1990) Brain histamine regulates pressor responses to peripheral hyperosmolality. Am J Physiol 259:R507–R513

    CAS  PubMed  Google Scholar 

  • Akins VF, Bealer SL (1991) Central nervous system histamine regulates peripheral sympathetic activity. Am J Physiol 260:H218–H224

    CAS  PubMed  Google Scholar 

  • Akins VF, Bealer SL (1993) Hypothalamic histamine release, neuroendocrine and cardiovascular responses during tuberomammillary nucleus stimulation in the conscious rat. Neuroendocrinology 57:849–855

    CAS  PubMed  Google Scholar 

  • Bealer SL (1999) Central neuronal histamine contributes to cardiovascular regulation. News Physiol Sci 14:100–105

    CAS  PubMed  Google Scholar 

  • Bealer SL, Abell SO (1995) Paraventricular nucleus histamine increases blood pressure by adrenoreceptor stimulation of vasopressin release. Am J Physiol 269:H80–H85

    CAS  PubMed  Google Scholar 

  • Bertolini A (1995) The opioid/anti-opioid balance in shock: a new target for therapy in resuscitation. Resuscitation 30:29–42

    CAS  Google Scholar 

  • Borges R (1994) Histamine H1 receptor activation mediates the preferential release of adrenaline in the rat adrenal gland. Life Sci 54:631–640

    Article  CAS  PubMed  Google Scholar 

  • Bödding M (2001) Histamine-induced Ca2+ release in bovine adrenal chromaffin cells. Naunyn Schmiedeberg’s Arch Pharmacol 364:508–515

    Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Progr Neurobiol 63:637–672

    Article  CAS  PubMed  Google Scholar 

  • Campos HA (2001) Peripheral neuronal histamine down regulates sympathetic activity and arterial pressure. In: Watanabe T, Timmerman H, Yanai K (eds) Histamine research in the new millennium. Elsevier Science, Amsterdam, pp 259–265

  • Cheng X, Leung SWS, Lo LS, Pang CCY (2003) Selective versus non-selective suppression of nitric oxide synthase on regional hemodynamics in rats with or without LPS-induced endotoxemia. Naunyn Schmiedeberg’s Arch Pharmacol 367:372–379

    Google Scholar 

  • Donoso AO, Barontini M (1986) Increase in plasma catecholamines by intraventricular injection of histamine in conscious rats. Naunyn Schmiedeberg’s Arch Pharmacol 334:188–192

    Google Scholar 

  • Evans RG, Ventura S, Dampney RAL Ludbrook J (2001) Neural mechanisms in the cardiovascular responses to acute central hypovolaemia. Clin Exp Pharmacol Physol 28:479–487

    CAS  Google Scholar 

  • Finch L, Hicks PE (1976) The cardiovascular effects of intraventricularly administered histamine in the anaesthetized rat. Naunyn Schmiedeberg’s Arch Pharmacol 293:151–157

    Google Scholar 

  • Galivan J, Nimec Z, Rhee M, Boschelli D, Oronsky AL, Kerwar SS (1988) Antifolate drug interactions: enhancement of growth inhibition due to the antipurine 5,10-dideazatetrahydrofolic acid by the lipophilic dihydrofolate reductase inhibitors metoprine and trimetrexate. Cancer Res 48:2421–2425

    CAS  PubMed  Google Scholar 

  • Gavilan J, Rhee MS, Johnson TB, Dilwith R, Nair MG, Bunni M, Priest DG (1989) The role of cellular folates in the enhancement of activity of the thymidylate synthase inhibitor 10-propargyl-5,8-dideazafolate against hepatoma cells in vitro by inhibitors of dihydrofolate reductase. J Biol Chem 264:10685–10692

    PubMed  Google Scholar 

  • Gerges E, Gertner SB (1990) Central cardiovascular responses of histamine and homodimaprit in normal and hypophysectomized rats. Agents Actions 31:243–248

    CAS  PubMed  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]DOPA in various regions of the brain. J Neurochem 13:655–669

    CAS  PubMed  Google Scholar 

  • Godlewski G, Malinowska B, Buczko W, Schlicker E (1997) Inhibitory H3 receptors on sympathetic nerves of the pithed rat: activation by endogenous histamine and operation in spontaneously hypertensive rats. Naunyn Schmiedeberg’s Arch Pharmacol 355:261–266

    Google Scholar 

  • Guarini S, Ferrari W, Bertolini A (1988) Involvement of the sympathetic nervous system in the cardiovascular effects of ACTH-(1–24) during hemorrhagic shock in rats. Naunyn Schmiedeberg’s Arch Pharmacol 337:556–560

    Google Scholar 

  • Inagaki N, Yamatodani A, Ando-Yamamoto M, Tohyama M, Watanabe T, Wada H (1988) Organization of histaminergic fibers in the rat brain. J Comp Neurol 273:283–300

    CAS  PubMed  Google Scholar 

  • Jochem J (2000) Cardiovascular effects of histamine administered intracerebroventricularly in critical haemorrhagic hypotension in rats. J Physiol Pharmacol 51:229–239

    CAS  PubMed  Google Scholar 

  • Jochem J (2001) Haematological, blood gas and acid-base effects of central histamine-induced reversal of critical haemorrhagic hypotension in rats. J Physiol Pharmacol 52:447–458

    CAS  PubMed  Google Scholar 

  • Jochem J (2002a) Endogenous central histamine-induced reversal of critical haemorrhagic hypotension in rats—studies with histamine N-methyltransferase inhibitor SKF 91488. Inflamm Res 51:551–556

    CAS  PubMed  Google Scholar 

  • Jochem J (2002b) Central histamine-induced reversal of critical haemorrhagic hypotension in rats—haemodynamic studies. J Physiol Pharmacol 53:75–84

    CAS  PubMed  Google Scholar 

  • Jochem J (2002c) Central histamine-induced reversal of haemorrhagic shock versus volume resuscitation in rats. Inflamm Res 51 (Suppl. 1):S57–S58

    Google Scholar 

  • Jochem J (2003a) Central histamine-induced reversal of haemorrhagic shock in rats—a comparison with the pressor effect of peripheral adrenergic receptor stimulation. Inflamm Res 52 (Suppl. 1):S41–S42

    Google Scholar 

  • Jochem J (2003b) Endogenous central histamine-induced reversal of critical hemorrhagic hypotension in rats—studies with l-histidine. Shock 20:332–337

    Article  PubMed  Google Scholar 

  • Jochem J, Żwirska-Korczala K (2002) Involvement of central noradrenergic system in the pressor effect of histamine administered intracerebroventricularly in rats—haemodynamic studies. Inflamm Res 51 (Suppl. 1):S59–S60

    Google Scholar 

  • Jochem J, Jośko J, Gwóźdź B (2001) Endogenous opioid peptides system in haemorrhagic shock—central cardiovascular regulation. Med Sci Monit 7:545–549

    CAS  PubMed  Google Scholar 

  • Jochem J, Żwirska-Korczala K, Rybus-Kalinowska B, Jagodzińska J, Korzonek-Szlacheta I (2002) Influence of SKF 91488, histamine N-methyltransferase inhibitor, on the central cardiovascular regulation during controlled, stepwise hemorrhagic hypotension in rats. Pol J Pharmacol 54:237–244

    CAS  PubMed  Google Scholar 

  • Jochem J, Żwirska-Korczala K, Gwóźdź B, Walichiewicz P, Jośko J (2003) Cardiac and regional haemodynamic effects of endothelin-1 in rats subjected to critical haemorrhagic hypotension. J Physiol Pharmacol 54:383–396

    CAS  PubMed  Google Scholar 

  • Kimura M, Hayakawa K, Sansawa H (2002) Involvement of γ-aminobutyric acid (GABA) B receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats. Jpn J Pharmacol 89:388–394

    Article  CAS  PubMed  Google Scholar 

  • Klein MC, Gertner SB (1981) Evidence for a role of endogenous histamine in central cardiovascular regulation: inhibition of histamine-N-methyltransferase by SKF 91488. J Pharmacol Exp Ther 216:315–320

    CAS  PubMed  Google Scholar 

  • Klein MC, Gertner SB (1983) Studies of the mechanism of the cardiovascular action of central injections of histamine. Neuropharmacology 22:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Kuwashima H, Matsumura C, Kimura T (2000) Differential secretion of adrenaline and noradrenaline in response to various secretagogues from bovine chromaffin cells. Clin Exp Pharmacol Physiol 27:494–499

    Article  CAS  PubMed  Google Scholar 

  • Lecklin A, Tuomisto L (1990) Feed intake after inhibition of histamine catabolism. Agents Actions 30:216–219

    CAS  PubMed  Google Scholar 

  • Lecklin A, Eriksson L, Leppäluoto J, Tarhanen J, Tuomisto L (1999) Metoprine-induced thirst and diuresis in Wistar rats. Acta Physiol Scand 165:325–333

    Article  CAS  PubMed  Google Scholar 

  • Little RA, Kirkman E, Ohnishi M (1998) Opioids and the cardiovascular responses to haemorrhage and injury. Intensive Care Med 24:405–414

    Article  CAS  PubMed  Google Scholar 

  • Liu LM, Ward JA, Dubick MA (2003) Hemorrhage-induced vascular hyporeactivity to norepinephrine in select vasculatures of rats and the roles of nitric oxide and endothelin. Shock 19:208–214

    Article  PubMed  Google Scholar 

  • Malinowska B, Schlicker E (1991) H3 receptor-mediated inhibition of the neurogenic vasopressor response in pithed rats. Eur J Pharmacol 205:307–310

    Article  CAS  PubMed  Google Scholar 

  • Malmberg-Aiello P, Lamberti C, Ghelardini C, Giotti A, Bartolini A (1994) Role of histamine in rodent antinociception. Br J Pharmacol 111:1269–1279

    CAS  PubMed  Google Scholar 

  • Malmberg-Aiello P, Ipponi A, Bartolini A, Schunack W (2000) Antiamnesic effect of metoprine and of selective histamine H1 receptor agonists in a modified mouse passive avoidance test. Neurosci Lett 288:1–4

    Article  CAS  PubMed  Google Scholar 

  • Malmberg-Aiello P, Ipponi A, Bartolini A, Schunack W (2002) Mouse light/dark box test reveals anxiogenic-like effects by activation of histamine H1 receptors. Pharmacol Biochem Behav 71:313–318

    Article  CAS  PubMed  Google Scholar 

  • Matsuda N, Hattori Y, Sakuraya F, Kobayashi M, Zhang XH, Kemmotsu O, Gando S (2002) Hemodynamic significance of histamine synthesis and histamine H1- and H2-receptor gene suppression during endotoxemia. Naunyn Schmiedeberg’s Arch Pharmacol 366:513–521

    Google Scholar 

  • Mazenot C, Ribuot C, Durand A, Joulin Y, Demenge P, Godin-Ribuot D (1999) In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-α-methylhistamine and its prodrug BP 2.94 in the dog. Br J Pharmacol 126:264–268

    CAS  PubMed  Google Scholar 

  • Methvin JM, Martin JR (1998) Cardiovascular responses evoked by carbachol microinjection into the posterior hypothalamus involves ganglionic nicotinic and muscarinic mechanisms. J Auton Pharmacol 18:177–187

    CAS  PubMed  Google Scholar 

  • Mlynarska MS (1994) Interaction between the central histaminergic and the muscarinic cholinergic systems. Agents Actions 41:C82–C84

    CAS  PubMed  Google Scholar 

  • Philippu A, Hagen R, Hanesch U, Waldmann U (1983) Changes in the arterial blood pressure increase the release of endogenous histamine in the hypothalamus of anaesthetized cats. Naunyn Schmiedeberg’s Arch Pharmacol 323:162–167

    Google Scholar 

  • Roy K, Mitsugi K, Sirlin S, Shane B, Sirotnak FM (1995) Different antifolate-resistant L1210 cell variants with either increased or decreased folylpolyglutamate synthetase gene expression at the level of mRNA transcription. J Biol Chem 270:26918–26922

    Article  CAS  PubMed  Google Scholar 

  • Savci V, Cavun S, Goktalay G, Ulus IH (2002) Cardiovascular effects of intracerebroventricularly injected CDP-choline in normotensive and hypotensive animals: the involvement of cholinergic system. Naunyn Schmiedeberg’s Arch Pharmacol 365:388–398

    Google Scholar 

  • Schadt JC, Ludbrook J (1991) Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol 260:H305–H318

    CAS  PubMed  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51

    CAS  PubMed  Google Scholar 

  • Segstro R, Greenway C (1986) Alpha adrenoceptor subtype mediating sympathetic mobilization of blood from the hepatic venous system in anesthetized cats. J Pharmacol Exp Ther 236:224–229

    CAS  PubMed  Google Scholar 

  • Singewald N, Philippu A (1996) Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 17:356–363

    CAS  PubMed  Google Scholar 

  • Westermann J, Hubl W, Kaiser N, Salewski L (2002) Simple, rapid and sensitive determination of epinephrine and norepinephrine in urine and plasma by non-competitive enzyme immunoassay, compared with HPLC method. Clin Lab 48:61–71

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is indebted to Prof. Petra Malmberg-Aiello (Department of Pharmacology, University of Florence, Italy) for the generous gift of metoprine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Jochem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jochem, J. Involvement of the sympathetic nervous system in the reversal of critical haemorrhagic hypotension by endogenous central histamine in rats. Naunyn-Schmiedeberg's Arch Pharmacol 369, 418–427 (2004). https://doi.org/10.1007/s00210-004-0883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0883-z

Keywords

Navigation