Skip to main content

Advertisement

Log in

Alpha-naphthoflavone induces vasorelaxation through the induction of extracellular calcium influx and NO formation in endothelium

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The effect of α-naphthoflavone (α-NF) on vascular function was studied in isolated ring segments of the rat thoracic aorta and in primary cultures of human umbilical vein endothelial cells (HUVECs). α-NF induced concentration-dependent relaxation of the phenylephrine-precontracted aorta endothelium-dependently and -independently at lower and higher concentrations, respectively. The cGMP, but not cAMP, content was increased significantly in α-NF-treated aorta. Pretreatment with N ω-nitro-l-arginine methyl ester (L-NAME) or methylene blue attenuated both α-NF induced vasorelaxation and the increase of cGMP content significantly. The increase of cGMP content induced by α-NF was also inhibited by chelating extracellular Ca2+ with EGTA. These results suggest that the endothelium-dependent vasorelaxation induced by α-NF is mediated most probably through Ca2+-dependent activation of NO synthase and guanylyl cyclase. In HUVECs, α-NF induced concentration-dependent formation of NO and Ca2+ influx. α-NF-induced NO formation was abolished by removal of extracellular Ca2+ and by pretreatment with the Ca2+ channel blockers SKF 96365 and Ni2+, but not by the L-type Ca2+ channel blocker verapamil. The Ca2+ influx, as measured by 45Ca2+ uptake, induced by α-NF was also inhibited by SKF 96365 and Ni2+. Our data imply that α-NF, at lower concentrations, induces endothelium-dependent vasorelaxation by promoting extracellular Ca2+ influx in endothelium and the activation of the NO-cGMP pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2
Fig. 3A–C
Fig. 4

Similar content being viewed by others

References

  • Alcaraz MJ, Hoult JRS (1985) Actions of flavonoids and the novel anti-inflammatory flavone, hypolaetin-8-glucoside on prostaglandin biosynthesis and inactivation. Biochem Pharmacol 34:2477–2482

    Article  CAS  Google Scholar 

  • Andries MJ, Lucier GW, Goldstein J, Tompson CL (1990) Involvement of cytochrome P-450c in α-naphthoflavone metabolism by rat liver microsomes. Mol Pharmacol 37:990–995

    CAS  PubMed  Google Scholar 

  • Balestrieri M.L, Castaldo D, Balestrieri C, Quagliuilo L, Giovane A, Servillo L (2003) Modulation by flavonoids of PAF and related phospholipids in endothelial cells during oxidative stress. J Lipid Res 44:380–387

    Article  CAS  PubMed  Google Scholar 

  • Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77:5216–5220

    CAS  PubMed  Google Scholar 

  • Birt DF, Walker D, Tibbles MB, Bresnick K (1986) Anti-mutagens and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis 7:959–963

    CAS  PubMed  Google Scholar 

  • Bossu JL, Elhamdani A, Feltz A (1992a) Voltage-dependent calcium entry in confluent bovine capillary endothelial cells. FEBS Lett 299:239–242

    Article  CAS  PubMed  Google Scholar 

  • Bossu JL, Elhamdani A, Feltz A, Tanzi F, Aunis D, Thierse D (1992b) Voltage-gated Ca entry in isolated bovine capillary endothelial cells: evidence of a new type of BAY K8644-sensitive channel. Pflugers Arch 420:200–207

    CAS  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome O-450 reductase. Nature 351:714–718

    CAS  PubMed  Google Scholar 

  • Buening MK, Chang RL, Huang ML, Fortner JC, Wood AW, Conney AH (1981) Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res 41:67–72

    Google Scholar 

  • Cheng YW, Kang JJ (1997) Mechanism of vasorelaxation of thoracic aorta caused by xanthone. Eur J Pharmacol 336:23–28

    Article  CAS  PubMed  Google Scholar 

  • Cholbi MR, Paya M, Alcraraz MJ (1991) Inhibitory effects of phenolic compounds on CCl4 induced microsomal lipid peroxidation. Experientia 47:195–199

    CAS  PubMed  Google Scholar 

  • Cobb JP, Cunnion RE, Danner RL (1993) Nitric oxide as a target for therapy in septic shock. Crit Care Med 21:1261–1263

    CAS  PubMed  Google Scholar 

  • Das A, Wang JH, Lien EJ (1994) Carcinogenicity, mutagenicity and cancer preventing activities of flavonoids: a structure-system-activity relation (SSAR) analysis. Prog Drug Res 42:133–166

    CAS  PubMed  Google Scholar 

  • De Groot H, Rauen U (1998) Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam Clin Pharmacol 12:249–255

    PubMed  Google Scholar 

  • De Whalley CV, Rankin SM, Hoult JRS, Jessup W, Lerke DE (1990) Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharmacol 39:1743–1750

    Google Scholar 

  • Diamond L, Gelboin HV (1969) Alpha-naphthoflavone: an inhibitor of hydrocarbon cytotoxicity and microsomal hydroxylase. Science 166:1023–1025

    CAS  PubMed  Google Scholar 

  • Ding Y, Vaziri ND (2000) Nifedipine and diltiazem but not verapamil up-regulate endothelial nitric oxide synthase expression. J Pharmacol Exp Ther 292:606–609

    Google Scholar 

  • Dong W, Teraoka H, Kondo S, Hiraga T (2001) 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis in the dorsal midbrain of zebrafish embryos by activation of aryl hydrocarbon receptor. Neurosci Lett 303:169–172

    CAS  PubMed  Google Scholar 

  • Duarte J, Perez-Vizcaino F, Utrilla P, Jimenez J, Tamargo J, Zarzuelo A (1993a) Vasodilatory effects of flavonoids in rat aortic smooth muscle: structure-activity relationships. Gen Pharmacol 24:857–862

    Article  CAS  PubMed  Google Scholar 

  • Duarte J, Perez-Vizcaino F, Zarzuello A, Jimenez J, Tamargo J (1993b) Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur J Pharmacol 239:1–7

    Article  CAS  PubMed  Google Scholar 

  • Duffy SJ, Vita JA (2003) Effects of phenolics on vascular endothelial function. Curr Opin Lipidol 14:21–27

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Janero DR (1998) Specific S-nitrosothiol (thionitrite) quantification as solution nitrite after vanadium (III) reduction and ozone-chemiluminescent detection. Free Radic Biol Med 25:621–628

    Article  CAS  PubMed  Google Scholar 

  • Fawzy AA, Vishwanath BS, Franson RC (1988) Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action. Agents Actions 25:394–400

    CAS  PubMed  Google Scholar 

  • Ferriola PC, Cody V, Middleton E Jr (1989) Protein kinase C inhibition by flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem Pharmacol 38:1617–1624

    CAS  PubMed  Google Scholar 

  • Fitzpatrick DF, Hirschfield SL, Coffey RG (1993) Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol 265:H774–H778

    CAS  PubMed  Google Scholar 

  • Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  CAS  PubMed  Google Scholar 

  • Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993a) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 34:454–457

    Article  Google Scholar 

  • Frankel EN, Waterhouse AL, Kinsella JE (1993b) Inhibition of human LDL oxidation by resveratrol. Lancet 341:1103–1104

    CAS  Google Scholar 

  • Furchgott RF (1984) The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 24:175–197

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Cherry PD, Zawadzki JV, Jothianandan D (1984) Endothelial cells as mediators of vasodilation of arteries. J Cardiovasc Pharmacol 6 (Suppl 2):S336–S343

    PubMed  Google Scholar 

  • Ganitkevich V, Hasse V, Pfitzer G (2002) Ca2+-dependent and Ca2+-independent regulation of smooth muscle contraction. J Muscle Res Cell Motil 23:47–52

    Article  CAS  PubMed  Google Scholar 

  • Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55:250–260

    Article  CAS  PubMed  Google Scholar 

  • Gordon GB, Prochaska HJ, Yang LYS (1991) Inhibition of NAD(P)H:quinone reductase in human peripheral blood lymphocytes. Carcinogenesis 12:2393–2396

    CAS  PubMed  Google Scholar 

  • Graier WF, Simecek S, Sturek M (1995) Cytochrome P450 mono-oxygenase regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol (Lond) 482:259–274

    Google Scholar 

  • Gryglewski RJ, Korbut R, Robak J, Swies J (1987). On the mechanism of anti-thrombotic action of flavonoids. Biochem Pharmacol 36:317–322

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Kim DH (1990) In vitro inhibition of dihydropyridine oxidation and AFB1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 11:2275–2279

    CAS  PubMed  Google Scholar 

  • Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygen scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16:845–850

    CAS  PubMed  Google Scholar 

  • Heo MY, Yu KS, Kim H, Kim HP, Au WW (1992) Anticlastogenic effect of flavonoids against mutagen-induced micronuclei in mice. Mutat Res 284:243–249

    Article  CAS  PubMed  Google Scholar 

  • Hu CM, Cheng HW, Cheng YW, Kang JJ (2001) Mechanisms underlying the induction of vasorelaxation in rat thoracic aorta by sanguinarine. Jpn J Pharmacol 85:47–53

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Sisodia M, Trinh K, Bedrood S, Wu G, Wei LH, Buga GM (2002) Nebivolol inhibits vascular smooth muscle cell proliferation by mechanisms involving nitric oxide but not cyclic GMP. Nitric Oxide 7:83–90

    Article  CAS  PubMed  Google Scholar 

  • Inazu M, Zhang H, Daniel EE (1995) Different mechanisms can activate Ca2+ entrance via cation currents in endothelial cells. Life Sci 56:11–17

    CAS  PubMed  Google Scholar 

  • Iyengar R, Stuehr DJ, Marletta MA (1985) Macrophage synthesis of nitrite, nitrate and N-nitrosamines: precursors and role of respiratory burst. Proc Natl Acad Sci USA 84:6369–6373

    Google Scholar 

  • Jaffe EA (1985) Physiologic functions of normal endothelial cells. Ann NY Acad Sci 454:279–291

    CAS  PubMed  Google Scholar 

  • Janel N, Dosne AM, Obert B, Meyer D, Kerbiriou-Nabias D (1997) Functional characterization of bovine von Willebrand factor gene promoter in bovine endothelial cells demonstrates species-specific properties. Gene 198:127–134

    Article  CAS  PubMed  Google Scholar 

  • Jeon YJ, Youk ES, Lee SH, Suh J, Na YJ, Kim HM (2002) Polychlorinated biphenyl-induced apoptosis of murine spleen cells is aryl hydrocarbon receptor independent but caspases dependent. Toxicol Appl Pharmacol 181:69–78

    Article  CAS  PubMed  Google Scholar 

  • Jimenez R, Anderiambeloson E, Duarte J, Andriantsitohaina R, Jimenez J, Perez-Zicaino F, Zarzuelo A, Tamargo J (1999) Involvement of thromboxane A2 in the endothelium-dependent contraction induced by myricetin in rat isolated aorta. Br J Pharmacol 127:1539–1544

    CAS  PubMed  Google Scholar 

  • Kanazawa K, Yamashita T, Ashida H, Danno G (1998) Antimutagenicity of flavones and flavonols to heterocyclic amines by specific and strong inhibition of the cytochrome P450 1A family. Biosci Biotechnol Biochem 62:970–977

    CAS  PubMed  Google Scholar 

  • Kauffman RF, Schenck KW, Utterback BG, Crowe VG, Cohen MK (1987) In vitro vascular relaxation by new inotropic agents: relationship to phosphodiesterase inhibition and cyclic nucleotides. J Pharmacol Exp Ther 242:864–872

    CAS  PubMed  Google Scholar 

  • Kerry NL, Abbey M (1997) Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 135:93–102

    Article  CAS  PubMed  Google Scholar 

  • Kerwin JF Jr, Heller M (1994) The arginine-nitric oxide pathway: a target for new drugs. Med Res Rev 14:23–74

    CAS  PubMed  Google Scholar 

  • Kim SH, Kang KW, Kim KW, Kim ND (2000) Procyanidins in Cratagus extract evokes endothelium-dependent vasorelaxation in rat aorta. Life Sci 67:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita N, Gelboin HV (1972) Aryl hydrocarbon hydroxylase and polycyclic hydrocarbon tumorigenesis: effect of the enzyme inhibitor 7,8-benzoflavone on tumorigenesis and macromolecular binding. Proc Natl Acad Sci USA 69:824–828

    CAS  PubMed  Google Scholar 

  • Lanza F, Bereta A, Stierle A, Corre G, Cazenave JP (1987) Cyclic nucleotide phosphodiesterase inhibitors prevent aggregation of human platelets by raising cyclic AMP and reducing cytoplasmic free calcium mobilization. Thromb Res 45:477–484

    CAS  PubMed  Google Scholar 

  • Li L, van Breemen C (1996) Agonist- and CPA-induced elevation of cytoplasmic free Ca2+ in intact valvular endothelium from rabbits. Am J Physiol 270:H837–H848

    CAS  PubMed  Google Scholar 

  • Li Y, Wang E, Patten CJ, Chen L, Yang CS (1994) Effects of flavonoids on cytochrome P-450 dependent acetaminophen metabolism in rat and human liver microsomes. Drug Metab Dispos 22:566–571

    CAS  PubMed  Google Scholar 

  • Lincolin TM, Cornwell TL (1991) Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 28:129–137

    Google Scholar 

  • Lincolin TM, Cornwell TL, Taylor AE (1990) cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular SMC. Am J Physiol 258:C399–C407

    CAS  PubMed  Google Scholar 

  • Low AM, Berdik M, Sormaz L, Gataianece S, Buchanan MR, Kwan CY, Daniel EE (1996) Plant alkaloids, tetrandrine and dernandezine, inhibit calcium-depletion stimulated calcium entry in human and bovine endothelial cells. Life Science 58:2327–2335

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luscher TF, Diederich D, Siebenmann R, Lehmann K, Stulz K, Stulz P, Von SL, Yang ZH, Turina M, Gradel E, Weber E (1988) Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med 319:462–467

    CAS  PubMed  Google Scholar 

  • Mayer B, Schmidt K, Humbert P, Bohme E (1989) Biosynthesis of endothelium-derived relaxation factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts l-arginine into an activator of soluble guanylyl cyclase. Biochem Biophys Res Commun 164:678–685

    CAS  PubMed  Google Scholar 

  • Middleton EJ (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182

    CAS  PubMed  Google Scholar 

  • Millanvoye-Vanbrussel E, David-Dufilho M, Pham TD, Iouzalen L, Aude Devynck M (1999). Regulation of arachidonic acid release by calcium influx in human endothelial cells. J Vasc Res 36:235–244

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Moroney MA, Alcaraz MJ, Forder RA, Carey F, Hoult JRS (1988) Selectivity of neutrophil 5-lipoxygenase and cyclo-oxygenase inhibition by an anti-inflammatory flavonoid glycoside and related aglycone flavonoids. J Pharm Pharmacol 40:787–792

    CAS  PubMed  Google Scholar 

  • Muraki K, Watanabe M, Imaizumi Y (2000) Nifedipine and nisoldipine modulate membrane potential of vascular endothelium via a myo-endothelial pathway. Life Sci 67:3163–3170

    Article  CAS  PubMed  Google Scholar 

  • Nijhoff WA, Groen GM, Peter HM (1993) Induction of rat hepatic and intestinal glutathione S-transferases and glutathione by dietary naturally occurring anticarcinogens. Int J Oncol 3:1131–1139

    CAS  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature: 327:524–526

  • Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    CAS  PubMed  Google Scholar 

  • Ramon Sanchez de Rojas V, Somoza B, Ortega T, Villar AM, Tejerina T (1999) Vasodilatory effect in rat aorta of eriodictyol obtained from Satureja obovata. Planta Med 65:234–238

    Article  PubMed  Google Scholar 

  • Rankin SM, Leake LS (1988) The modification of low-density lipoprotein by macrophage, by oxidation or proteolysis. Agents Actions Suppl 26:233–239

    CAS  PubMed  Google Scholar 

  • Renaud S, DeLorgeril M (1992) Wine, alcohol, platelets and the French paradox for coronary heart disease. Lancet 339:1523–1526

    CAS  PubMed  Google Scholar 

  • Revuelta MP, Hidalgo A, Cantabrana B (1999) Involvement of cAMP and beta-adrenoceptors in the relaxing effect elicited by flavonoids on rat uterine smooth muscle. J Auton Pharmacol 19:353–358

    CAS  Google Scholar 

  • Rodgers EH, Grant MH (1998) The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF-7 human breast cancer cells. Chem Biol Interact 116:213–228

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz-Weiss P, Sessa WC, Millstien S, Kaufman S, Watson CA, Pober JS (1994) Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest 93:2236–2243

    CAS  PubMed  Google Scholar 

  • Sessa WC, Harrison JK, Barber CM (1992) Molecular cloning of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267:15274–15276

    CAS  PubMed  Google Scholar 

  • Shimada T, Yamazaki H, Foroozesh M, Hopkins NE, Alworth WL, Guengerich FP (1998) Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, and 1B1. Chem Res Toxicol 11:1048–1056

    CAS  PubMed  Google Scholar 

  • Shou M, Grogan J, Mancewicz, JA, Krausz KW, Gonzalez FJ, Gelboin HV, Korzekwa KR (1994) Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 33:6450–6455

    CAS  PubMed  Google Scholar 

  • Siess MH, Leelerc J, Canivenc-Lavier MC, Rat P, Suschetet M (1995) Heterogenous effects of natural flavonoids on mono-oxygenase activities in human and rat liver microsomes. Toxicol Appl Pharmacol 130:73–78

    Google Scholar 

  • Silveira LA, Smith JL, Tan JL, Spudich JA (1998) MLCK-A, an unconventional myosin light chain kinase from Dictyostelium, is activated by a cGMP-dependent pathway. Proc Natl Acad Sci USA 95:13000–13005

    Article  CAS  PubMed  Google Scholar 

  • Sousa LR, Marletta MA (1985) Inhibition of cytochrome P450 activity in rat liver microsomes by the naturally occurring flavonoid quercetin. Arch Biochem Biophys 240:345–357

    CAS  PubMed  Google Scholar 

  • Staples JE, Murante FG, Fiore NC, Gasiewicz TA, Silverstone AE (1998) Thymic alterations induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are strictly dependent on aryl hydrocarbon receptor activation in hemopoietic cells. J Immunol 160:3844–3854

    CAS  PubMed  Google Scholar 

  • Tassaneeyakul W, Birkett DJ, Veronese ME, Mcmanus ME, Tukey RH, Quattrochi LC, Gelboin HV, Miners JO (1993) Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2. J Pharmacol Exp Ther 265:401–407

    CAS  PubMed  Google Scholar 

  • Trigueiro F, Cortes SF, Almeida RN, Lemos VS (2000) Endothelium-independent vasorelaxant effect of dioclein, a new flavonoid isolated from Dioclea grandiflora, in the rat aorta. J Pharm Pharmacol. 52:1431–1434

    Google Scholar 

  • Tzeng SH, Ko WC, Ko FN, Teng CM (1991) Inhibition of platelet aggregation by some flavonoids. Thromb Res 64:91–100

    CAS  PubMed  Google Scholar 

  • Uchida H, Tanaka Y, Ishii K, Nakayama K (1999) L-type Ca2+ channels are not involved in coronary endothelial Ca2+ influx mechanism responsible for endothelium-dependent relaxation. Res Commun Mol Pathol Pharmacol 104:127–144

    CAS  PubMed  Google Scholar 

  • Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS (1986) Modulation of vascular smooth muscle contraction by endothelium. Annu Rev Physiol 48:307–330

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chu W, van Breemen C (1996) Potentiation of acetylcholine-induced responses in freshly isolated rabbit aortic endothelial cells. J Vasc Res 33:414–424

    CAS  PubMed  Google Scholar 

  • Wei H, Tye L, Bresnick E, Birt DF (1990) Effect of apigenin a plant flavonoid on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res 50:499–502

    CAS  PubMed  Google Scholar 

  • Xie Q, Zhang Y, Zhai, C, Bonanno JA (2002) Calcium influx factor from cytochrome P450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J Biol Chem 277:16559–16566

    Article  CAS  PubMed  Google Scholar 

  • Xie QW, Cho HJ, Calaycay J (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

    CAS  PubMed  Google Scholar 

  • Yakubu MA, Leffler CW (2002) L-type voltage-dependent Ca2+ channels in cerebral microvascular endothelial cells and ET-1 biosynthesis. Am J Physiol 283:C1687–C1695

    CAS  Google Scholar 

  • Yao X, Kwan HY, Chan FL, Chan NW, Huang Y. (2000) A protein kinase G-sensitive channel mediates flow-induced Ca2+ entry into vascular endothelial cells. FASEB J 14:932–938

    CAS  PubMed  Google Scholar 

  • Youdim KM, McDonald J, Kalt W, Joseph JA (2002) Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J Nutr Biochem 13:282–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaw-Jou Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, YW., Li, CH., Lee, CC. et al. Alpha-naphthoflavone induces vasorelaxation through the induction of extracellular calcium influx and NO formation in endothelium. Naunyn-Schmiedeberg's Arch Pharmacol 368, 377–385 (2003). https://doi.org/10.1007/s00210-003-0820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0820-6

Keywords

Navigation