Skip to main content
Log in

Modulation of Fas receptor proteins and dynamin during opiate addiction and induction of opiate withdrawal in rat brain

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The Fas receptor is involved in the regulation of apoptosis but also can function as a non-apoptotic signal transducer. This study was mainly designed to quantitate Fas proteins in rat brain during heroin addiction and opiate withdrawal. In rat, mouse and human brains, and in SH-SY5Y cells, similar forms of Fas were immunodetected with different antibodies (i.e., 35 kDa native Fas and 48- and 51-kDa glycosylated Fas). Acute (2 h) treatments with the μ-opioid receptor agonists heroin (10 mg/kg) and morphine (30 mg/kg) increased the immunodensity of native Fas (124% and 36%) but not that of glycosylated Fas in the cerebral cortex. Chronic (5 days) heroin (5–30 mg/kg) and morphine (10–100 mg/kg) were also associated with increased native Fas (76% and 45%) and with different expressions of glycosylated Fas. In heroin-dependent rats, opiate withdrawal (48 h) resulted in a sustained increase in native Fas (107%) and in up-regulation of 51 kDa glycosylated Fas (51%). Acute treatments with selective δ-receptor (SNC-80, 10 mg/kg) or κ-receptor (U 50488-H, 10 mg/kg) agonists did not alter the content of native or glycosylated Fas. Chronic pentazocine (10–80 mg/kg, 5 days), a mixed opiate drug and σ1 receptor agonist, decreased native (48%) and glycosylated (38–82%) Fas proteins. Similarly, the selective σ1 agonist (+)-SKF 10047 also decreased native Fas (37%) and the effect was blocked by the σ1 antagonist BD 1063. Brain dynamin was up-regulated by acute and/or chronic heroin (30–39%), morphine (47–85%), pentazocine (51%) and heroin withdrawal (74%). The main results indicate that chronic heroin/morphine treatment and heroin withdrawal are associated with up-regulation of 35 kDa native Fas (and with different expressions of glycosylated Fas), and also with concomitant increases of dynamin in rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 A
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi M, Suematsu S, Kondo T, Ogasawara T, Tanaka T, Yoshida N, Nagata S (1995) Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Gen 11:294–300

    CAS  PubMed  Google Scholar 

  • Badorff C, Ruetten H, Mueller S, Stahmer M, Gehring D, Jung F, Ihling C, Zeiher AM, Dimmeler S (2002) Fas receptor signaling inhibits glycogen synthase kinase 3β and induces cardiac hypertrophy following pressure overload. J Clin Invest 109:373–381

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, Naftolin F (1999) FasL (CD95L, Apo1L) is expressed in the normal rat and human brain. Glia 27:62–74

    Google Scholar 

  • Boronat MA, García-Fuster MJ, García-Sevilla JA (2001) Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol 134:1263–1270

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chatzaki E, Makrigiannakis A, Margioris AN, Kouimtzoglou E, Gravanis A (2001) The Fas/FasL apoptotic pathway is involved in κ-opioid-induced apoptosis of human endometrial stromal cells. Mol Human Reprod 7:867–874

    Article  CAS  Google Scholar 

  • Choi C, Park JY, Lee J, Lim J-H, Shin E-C, Ahn Y, Kim C-H, Kim S-J, Kim J-D, Choi IS, Choi I-H (1999) Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL-6, TNF-α, or IFN-γ. J Immunol 162:1889–1895

    CAS  PubMed  Google Scholar 

  • Craft RM, McNeil DM (2003) Agonist/antagonist properties of nalbuphine, butorphanol and (−)-pentazocine in male vs. female rats. Pharmacol Biochem Behav 75:235–245

    Article  CAS  PubMed  Google Scholar 

  • Desbarats J, Birge RB, Minouni-Rongy M, Weistein DE, Palerme J-S, Newell MK (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5:118–125

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Alcón M, La Harpe R, Guimón J, García-Sevilla JA (2003) Down-regulation of neuronal cdk5/p35 in opioid addicts and opiate-treated rats: relation to neurofilament phosphorylation. Neuropsychopharmacology 28:947–955

    PubMed  Google Scholar 

  • Gabilondo AM, García-Sevilla JA (1995) Spontaneous withdrawal from long-term treatment with morphine accelerates the turnover of α2-adrenoceptors in rat brain: up-regulation of receptors associated with increased receptor appearance. J Neurochem 64:2590–2597

    CAS  PubMed  Google Scholar 

  • García-Fuster MJ, Ferrer-Alcón M, Miralles A, García-Sevilla JA (2002) Modulation of pro-apoptotic Fas receptor proteins during heroin addiction in rat brain. Methods Find Exp Clin Pharmacol 24 [Suppl A]:161

  • García-Sevilla JA, Ventayol P, Busquets X, La Harpe R, Walzer C, Guimón J (1997) Marked decrease of immunolabelled 68 kDa neurofilament (NF-L) proteins in brains of opiate addicts. Neuroreport 8:1561–1565

    PubMed  Google Scholar 

  • Harlow E, Lane D (1999) Using antibodies. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Itoh N, Yonehara S, Ishii A, Yohenara M, Mizushima S-I, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243

    CAS  PubMed  Google Scholar 

  • Kamitani T, Nguyen HP, Yeh ETH (1997) Activation-induced aggregation and processing of the human fas antigen. Detection with cytoplasmic domain-specific antibodies. J Biol Chem 272:22307–22314

    Article  CAS  PubMed  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  CAS  PubMed  Google Scholar 

  • López E, Ferrer I (2000) Staurosporine- and H-7-induced cell death in SH-SY5Y neuroblastoma cells is associated with caspase-2 and caspase-3 activation, but not with activation of the FAS/FAS-L-caspase-8 signaling pathway. Mol Brain Res 85:61–67

    Article  PubMed  Google Scholar 

  • MacEwan DJ (2002) TNF ligands and receptors – a matter of life and death. Br J Pharmacol 135:855–875

    CAS  PubMed  Google Scholar 

  • Matsuno K, Senda T, Kobayashi T, Mita S (1995) Involvement of σ1 receptor in (+)-N-allylnormetazocine-stimulated hippocampal cholinergic functions in rats. Brain Res 690:200–206

    Article  CAS  PubMed  Google Scholar 

  • McClure SJ, Robinson PJ (1996) Dynamin, endocytosis and intracellular signalling. Mol Membr Biol 13:189–215

    CAS  PubMed  Google Scholar 

  • McCracken KA, Bowen WD, Matsumoto RR (1999) Novel σ receptor ligands attenuate the locomotor stimulatory effects of cocaine. Eur J Pharmacol 365:35–38

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Pasternak W (2001) Molecular cloning and pharmacological characterization of the rat sigma1 receptor. Biochem Pharmacol 62:349–355

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Pasternak W (2002) σ1 Receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 300:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Murray SR, Evans CJ, Von Zastrow M (1998) Phosphorylation is not required for dynamin-dependent endocytosis of a truncated mutant opioid receptor. J Biol Chem 273:24987–24991

    Article  CAS  PubMed  Google Scholar 

  • Nagata S (1999) Fas ligand-induced apoptosis. Ann Rev Gen 33:29–55

    Article  CAS  Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death receptor. Science 267:1449–1456

    CAS  PubMed  Google Scholar 

  • Negus SS, Brandt MR, Gatch MB, Mello NK (2003) Effects of heroin and its metabolites on schedule-controlled responding and thermal nociception in rhesus monkeys: sensitivity to antagonism by quadazocine, naltrindole and β-funaltrexamine. Drug Alcohol Depend 70:17–27

    Article  CAS  PubMed  Google Scholar 

  • Noble F, Szücs M, Kieffer B, Roques BP (2000) Overexpression of dynamin is induced by chronic stimulation of μ- but not δ-opioid receptors: relationship with μ-related morphine dependence. Mol Pharmacol 58:159–166

    CAS  PubMed  Google Scholar 

  • Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, Li-Weber M, Richards S, Dhein J, Trauth B, Ponstingl H, Krammer P (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor family. J Biol Chem 267:10709–10715

    CAS  PubMed  Google Scholar 

  • Orlinick JR, Vaishnaw AK, Elkon KB (1999) Structure and function of Fas/Fas ligand. Int Rev Immunol 18:293–308

    CAS  PubMed  Google Scholar 

  • Ozaita A, Escribá PV, García-Sevilla JA (1999) The alkylating agent EEDQ facilitates protease-mediated degradation of the human brain α2A-adrenoceptor as revealed by a sequence-specific antibody. Neurosci Lett 263:105–108

    Article  PubMed  Google Scholar 

  • Papakonstanti EA, Bakogeorgou E, Castanas E, Emmanouel DS, Hartig R, Stournaras C (1998) Early alterations of actin cytoskeleton in OK cells by opioids. J Cell Biochem 70:60–69

    Article  PubMed  Google Scholar 

  • Patel M, Gomes B, Patel V, Yoburn BC (2002) Antagonist-induced μ-opioid receptor up-regulation decreases G-protein receptor kinase-2 and dynamin-2 abundance in mouse spinal cord. Eur J Pharmacol 446:37–42

    Article  PubMed  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su T-P, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86

    CAS  PubMed  Google Scholar 

  • Raoul C, Estévez AG, Nishimune H, Cleveland DW, deLapeyrière O, Henderson CE, Haase G, Pettmann B (2002) Motoneuron death triggered by a specific pathway downstream of Fas: potentiation by ALS-linked SOD1 mutations. Neuron 35:1067–1083

    PubMed  Google Scholar 

  • Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol 45:330–334

    PubMed  Google Scholar 

  • Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74:1–20

    Article  CAS  PubMed  Google Scholar 

  • Schuller AGP, King MA, Zhang J, Bolan E, Pan Y-X, Morgan DJ, Chang A, Czick ME, Unterwald EM, Pasternak GW, Pintar JE (1999) Retention of heroin and morphine-6β-glucoronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 2:151–156

    Article  PubMed  Google Scholar 

  • Siegel RM, Ka-Ming Chang F, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474

    Article  CAS  PubMed  Google Scholar 

  • Singhal PC, Bhaskaran M, Patel J, Patel K, Kasinath BS, Duraisamy S, Franki N, Reddy K, Kapasi AA (2002) Role of P38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol 168:4025–4033

    PubMed  Google Scholar 

  • Tada Y, O-Wang J, Takiguchi Y, Tatsumi K, Kuriyama T, Okada S, Tokuhisa T, Sakiyama S, Tagawa M (2002) A novel role for Fas ligand in facilitating antigen acquisition by dendritic cells. J Immunol 169:2241–2245

    CAS  PubMed  Google Scholar 

  • Ventayol P, Busquets X, García-Sevilla JA (1997) Modulation of immunoreactive protein kinase C-α and β isoforms and G proteins by acute and chronic treatments with morphine and other opiate drugs in rat brain. Naunyn-Schmiedebergs Arch Pharmacol 355:491–500

    Google Scholar 

  • Wajant H (2002) The Fas signalling pathway: more than a paradigm. Science 296:1635–1636

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Charboneau R, Barke RA, Loh HH, Roy S (2002) μ-Opioid receptor mediates chronic restraint stress-induced lymphocyte apoptosis. J Immunol 169:3630–3636

    CAS  PubMed  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Itoh N, Yonehara S, Copeland NG, Jenkins NA, Nagata S (1992) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148:1274–1279

    PubMed  Google Scholar 

  • Whistler JL, Von Zastrow M (1999) Dissociation of functional roles of dynamin in receptor-mediated endocytosis and mitogenic signal transduction. J Biol Chem 274:24575–24578

    CAS  PubMed  Google Scholar 

  • Yin D, Mufson RA, Wang R, Shi Y (1999) Fas-mediated cell death promoted by opioids. Nature 397:218

    Article  PubMed  Google Scholar 

  • Yin D, Tuthill D, Mufson RA, Shi Y (2000) Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J Exp Med 191:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Yu VC, Richards ML, Sadée W (1986) A human neuroblastoma cell line expresses μ and δ opioid receptor sites. J Biol Chem 261:1065–1070

    CAS  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grant BFI2000–0306 from MCT (Madrid, Spain) and by grant 32.57066.99 from FNSRS (Bern, Switzerland). M.J.G.-F. was supported by a predoctoral fellowship from CSIC/MECD-Associated Units. J.A. García-Sevilla is a member of the Institut d’Estudis Catalans (Barcelona, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús A. García-Sevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Fuster, M.J., Ferrer-Alcón, M., Miralles, A. et al. Modulation of Fas receptor proteins and dynamin during opiate addiction and induction of opiate withdrawal in rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 368, 421–431 (2003). https://doi.org/10.1007/s00210-003-0801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0801-9

Keywords

Navigation