Skip to main content

Advertisement

Log in

The first eigenvalue of the Laplacian on orientable surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The famous Yang–Yau inequality provides an upper bound for the first eigenvalue of the Laplacian on an orientable Riemannian surface solely in terms of its genus \(\gamma \) and the area. Its proof relies on the existence of holomorhic maps to \(\mathbb {CP}^1\) of low degree. Very recently, Ros was able to use certain holomorphic maps to \(\mathbb {CP}^2\) in order to give a quantitative improvement of the Yang–Yau inequality for \(\gamma =3\). In the present paper, we generalize Ros’ argument to make use of holomorphic maps to \(\mathbb {CP}^n\) for any \(n>0\). As an application, we obtain a quantitative improvement of the Yang–Yau inequality for all genera except for \(\gamma = 4,6,8,10,14\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourguignon, J.P., Li, P., Yau, S.T.: Upper bound for the first eigenvalue of algebraic submanifolds. Comment. Math Helv. 69, 199–207 (1994)

    Article  MathSciNet  Google Scholar 

  2. Cianci D., Karpukhin, M., Medvedev, V.: On branched minimal immersions of surfaces by first eigenfunctions. Annals of Global Analysis and Geometry 56:4 (2019), 667–690. Preprint arXiv:1711.05916

  3. El Soufi, A., Giacomini, H., Jazar, M.: A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J. 135(1), 181–202 (2006)

    Article  MathSciNet  Google Scholar 

  4. El Soufi, A., Ilias, S.: Le volume conforme et ses applications d’après Li et Yau, Sém. Théorie Spectrale et Géométrie, Institut Fourier, 1983-1984, No.VII, (1984)

  5. Fang, H.: The Gauss-Bonnet formula for a conformal metric with finitely many cone or cusp singularities on a compact Riemann surface, arXiv:191201187v1 [math.DG]

  6. Griffiths, P.A., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library, Wiley Interscience (1994)

    Book  Google Scholar 

  7. Hersch, J.: Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér A-B 270 (1970), A1645–A1648

  8. Jakobson, D., Nadirashvili, N., Polterovich, I.: Extremal metric for the first eigenvalue on a Klein bottle. Can. J. Math. 58(2), 381–400 (2006)

    Article  MathSciNet  Google Scholar 

  9. Karpukhin, M.: Upper bounds for the first eigenvalue of the Laplacian on non-orientable surfaces. Int. Math. Res. Notices 20, 6200–6209 (2016)

    Article  MathSciNet  Google Scholar 

  10. Karpukhin, M.: On the Yang-Yau inequality for the first Laplace eigenvalue. Geometric and Functional Analysis 29:6 (2019), 1864–1885. Preprint arXiv:1902.03473

  11. Karpukhin, M.: Index of minimal surfaces and isoperimetric eigenvalue inequalities. Inventiones Mathematicae 223, 335–377 (2021)

    Article  MathSciNet  Google Scholar 

  12. Karpukhin, M., Nadirashvili, N., Penskoi, A. V., Polterovich, I.: Conformally maximal metrics for Laplace eigenvalues on surfaces. Surveys in Differential Geometry, 24:1 (2019), 205–256. Preprint arXiv:2003.02871

  13. Karpukhin, M., Stern, D. L.: Min-max harmonic maps and a new characterization of conformal eigenvalues. Preprint arXiv:2004.04086

  14. Li, P., Yau, S.-T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Inventiones Mathematicae 69(2), 269–291 (1982)

    Article  MathSciNet  Google Scholar 

  15. Matthiesen, H., Petrides, R.: Handle attachment and the normalized first eigenvalue. Preprint arXiv:1909.03105

  16. Nadirashvili, N.: Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal 6(5), 877–897 (1996)

    Article  MathSciNet  Google Scholar 

  17. Nadirashvili, N.: Isoperimetric inequality for the second eigenvalue of a sphere. J. Differ. Geom. 61(2), 335–340 (2002)

    Article  MathSciNet  Google Scholar 

  18. Nayatani, S., Shoda, T.: Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus Mathematique 357(1), 84–98 (2019)

    Article  MathSciNet  Google Scholar 

  19. Ros, A.: On the first eigenvalue of the Laplacian on compact surfaces of genus three. J. of the Math. Society of Japan 1:1 (2021), 1–16. Preprint arXiv:2010.14857

  20. Ros, A.: Spectral geometry of CR-minimal submanifolds in the complex projective space. Kodai Math. J. 6(1), 88–99 (1983)

    Article  MathSciNet  Google Scholar 

  21. Ros, A.: On spectral geometry of Kaehler submanifolds. J. Math. Soc. Jpn. 36(3), 433–448 (1984)

    Article  MathSciNet  Google Scholar 

  22. Yang, P. C., Yau, S.-T.: Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7:1 (1980), 55–63

Download references

Acknowledgements

The authors would like to thank I. Polterovich and A. Penskoi for fruitful discussions. The first author is partially supported by NSF grant DMS-1363432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Karpukhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpukhin, M., Vinokurov, D. The first eigenvalue of the Laplacian on orientable surfaces. Math. Z. 301, 2733–2746 (2022). https://doi.org/10.1007/s00209-022-03009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03009-4

Navigation