Skip to main content
Log in

Riesz transforms for bounded Laplacians on graphs

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study several problems related to the \(\ell ^p\) boundedness of Riesz transforms for graphs endowed with so-called bounded Laplacians. Introducing a proper notion of the gradient of a function, we prove for \(p\in (1,2]\) an \(\ell ^p\) estimate for the gradient of the continuous time heat semigroup, an \(\ell ^p\) interpolation inequality as well as the \(\ell ^p\) boundedness of the modified Littlewood–Paley–Stein function for a graph with bounded Laplacian. This yields an analogue to Dungey’s results in [21] while removing some additional assumptions. Coming back to the classical notion of the gradient, we give a counterexample to the interpolation inequality and hence to the boundedness of Riesz transforms for bounded Laplacians for \(1<p<2\). Finally, we prove the boundedness of the Riesz transform for \(1< p<\infty \) under the assumption of positive spectral gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P., Coulhon, T.: Riesz transform on manifolds and Poincaré inequalities. Ann. ScI. Norm. Super. Pisa Cl. Sci. (5) 4(3), 531–555 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Auscher, P., Coulhon, T., Duong, X.T., Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. École Norm. Sup. (4) 37(6), 911–957 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée (French) [A study of Riesz transforms in Riemannian manifolds with minorized Ricci curvature]. In: Séminaire de Probabilités, XXI, vol. 1247 of Lecture Notes in Math., pp. 137–172. Springer, Berlin (1987)

  4. Bañuelos, R., Bogdan, K., Luks, T.: Hardy-Stein identities and square functions for semigroups. J. Lond. Math. Soc. 94(2), 462–478 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham (2014)

    Google Scholar 

  6. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li-Yau inequality on graphs. J. Differ. Geom. 99(3), 359–405 (2015)

    Article  MathSciNet  Google Scholar 

  7. Badr, N., Russ, E.: Interpolation of Sobolev spaces, Littlewood–Paley inequalities and Riesz transforms on graphs. Publ. Mat. 53(2), 273–328 (2009)

    Article  MathSciNet  Google Scholar 

  8. Carron, G.: Riesz transforms on connected sums. Ann. Inst. Fourier (Grenoble) 57(7), 2329–2343 (2007)

    Article  MathSciNet  Google Scholar 

  9. Chen, L.: Sub-Gaussian heat kernel estimates and quasi Riesz transforms for \(1\le p\le 2\). Publ. Mat. 59(2), 313–338 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chen, L., Coulhon, T., Feneuil, J., Russ, E.: Riesz transform for \(1 \le p \le 2\) without gaussian heat kernel bound. J. Geom. Anal. 27(2), 1489–1514 (2017)

    Article  MathSciNet  Google Scholar 

  11. Coulhon, T., Duong, X.T.: Riesz transforms for \(1\le p\le 2\). Trans. Am. Math. Soc. 351(3), 1151–1169 (1999)

    Article  Google Scholar 

  12. Coulhon, T., Duong, X.T.: Riesz transform and related inequalities on noncompact Riemannian manifolds. Commun. Pure Appl. Math. 56(12), 1728–1751 (2003)

    Article  MathSciNet  Google Scholar 

  13. Coulhon, T., Duong, X.T., Li, X.D.: Littlewood–Paley–Stein functions on complete Riemannian manifolds for \(1\le p\le 2\). Studia Math. 154(1), 37–57 (2003)

    Article  MathSciNet  Google Scholar 

  14. Coulhon, T., Grigor’yan, A., Zucca, F.: The discrete integral maximum principle and its applications. Tohoku Math. J. (2) 57(4), 559–587 (2005)

    Article  MathSciNet  Google Scholar 

  15. Coulhon, T., Sikora, A.: Riesz meets Sobolev. Colloq. Math. 118(2), 685–704 (2010)

    Article  MathSciNet  Google Scholar 

  16. Davies, E.B.: Heat Kernels and Spectral Theory, Vol. 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  17. Davies, E.B.: Large deviations for heat kernels on graphs. J. Lond. Math. Soc. s2–47(1), 65–72 (1993)

    Article  MathSciNet  Google Scholar 

  18. Davies, E.B.: Linear Operators and Their Spectra, Vol. 106 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  19. Dodziuk, J., Karp, L.: Spectral and function theory for combinatorial Laplacians. In: Geometry of Random Motion, Contemp. Math., vol. 73, pp. 25–40. American Mathematical Society, Ithaca, NY, Providence, RI (1988)

  20. Dungey, N.: Riesz transforms on a discrete group of polynomial growth. Bull. Lond. Math. Soc. 36(6), 833–840 (2004)

    Article  MathSciNet  Google Scholar 

  21. Dungey, N.: A Littlewood-Paley-Stein estimate on graphs and groups. Studia Math. 189(2), 113–129 (2008)

    Article  MathSciNet  Google Scholar 

  22. Grigor’yan, A.: Heat kernel and analysis on manifolds, vol. 47 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, R.I. (2009)

  23. Hua, B., Jost, J.: \(L^q\) harmonic functions on graphs. Isr. J. Math. 202(1), 475–490 (2014)

    Article  Google Scholar 

  24. Hua, B., Keller, M.: Harmonic functions of general graph Laplacians. Calc. Var. Part. Differ. Equations 51(1–2), 343–362 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ji, L., Kunstmann, P., Weber, A.: Riesz transform on locally symmetric spaces and Riemannian manifolds with a spectral gap. Bull. Sci. Math. 134(1), 37–43 (2010)

    Article  MathSciNet  Google Scholar 

  26. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Komatsu, H.: Fractional powers of operators. Pac. J. Math. 19, 285–346 (1966)

    Article  MathSciNet  Google Scholar 

  28. Lohoué, N.: Estimation des fonctions de Littlewood–Paley–Stein sur les variétés riemanniennes à courbure non positive. Ann. Sci. École Norm. Sup. (4) 20(4), 505–544 (1987)

    Article  MathSciNet  Google Scholar 

  29. Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)

    Article  MathSciNet  Google Scholar 

  30. Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52(8), 853–858 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis, 2nd edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  32. Russ, E.: Riesz transforms on graphs for \(1\le p\le 2\). Math. Scand. 87(1), 133–160 (2000)

    Article  MathSciNet  Google Scholar 

  33. Russ, E.: \(H^1\)-\(L^1\) boundedness of Riesz transforms on Riemannian manifolds and on graphs. Potential Anal. 14(3), 301–330 (2001)

    Article  MathSciNet  Google Scholar 

  34. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood–Paley Theory. Annals of Mathematics Studies, no. 63. Princeton University Press, Princeton, University of Tokyo Press, Tokyo (1970)

  35. Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MathSciNet  Google Scholar 

  36. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83(2), 277–405 (2009)

    Article  MathSciNet  Google Scholar 

  37. Woess, W.: Random Walks on Infinite Graphs and Groups, Vol. 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobo Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Li Chen was supported in part by ICMAT Severo Ochoa project SEV-2011-0087 and she acknowledges that the research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC agreement no. 615112 HAPDEGMT. Bobo Hua is supported by NSFC (China), grant no. 11401106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Coulhon, T. & Hua, B. Riesz transforms for bounded Laplacians on graphs. Math. Z. 294, 397–417 (2020). https://doi.org/10.1007/s00209-019-02253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02253-5

Navigation