Skip to main content
Log in

Generic vanishing for semi-abelian varieties and integral Alexander modules

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We revisit generic vanishing results for perverse sheaves with any field coefficients on a complex semi-abelian variety, and indicate several topological applications. In particular, we obtain finiteness properties for the integral Alexander modules of complex algebraic varieties mapping to semi-abelian varieties. Similar results were recently derived by the authors by using Morse-theoretic arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatt, B., Schnell, S., Scholze, P.: Vanishing theorems for perverse sheaves on abelian varieties, revisited. Sel. Math. (N.S.) 24(1), 63–84 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Budur, N., Liu, Y., Wang, B.: The monodromy theorem for compact Kähler manifolds and smooth quasi-projective varieties. Math. Ann. 371(3–4), 1069–1086 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Budur, N., Wang, B.: Cohomology jump loci of quasi-projective varieties. Ann. Sci. Éc Norm. Supér. (4) 48(1), 227–236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Budur, N., Wang, B.: Cohomology jump loci of differential graded Lie algebras. Compos. Math. 151(8), 1499–1528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dimca, A.: Sheaves in Topology. Universitext, Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  6. Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, 150. Springer, New York (1995)

  7. Gabber, O., Loeser, F.: Faisceaux pervers \(\ell \)-adiques sur un tore. Duke Math. J. 83(3), 501–606 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iitaka, S.: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23(3), 525–544 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Katz, N., Laumon, G.: Transformation de Fourier et majoration de sommes exponentielles. Inst. Hautes Etudes Sci. Publ. Math. 62, 361–418 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krämer, T.: Perverse sheaves on semiabelian varieties. Rend. Semin. Mat. Univ. Padova 132, 83–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], pp. 48. Springer, Berlin (2004)

  12. Liu, Y., Maxim, L.: Characteristic varieties of hypersurface complements. Adv. Math. 306, 451–493 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Y., Maxim, L., Wang, B.: Topology of subvarieties of complex semi-abelian varieties. arXiv:1706.07491

  14. Milnor, J.: Infinite cyclic coverings. In: 1968 Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), pp. 115–133, Prindle, Weber and Schmidt, Boston, Mass (1967)

  15. Papadima, S., Suciu, A.: Bieri-Neumann-Strebel-Renz invariants and homology jumping loci. Proc. Lond. Math. Soc. (3) 100(3), 795–834 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schürmann, J.: Topology of Singular Spaces and Constructible Sheaves, Monografie Matematyczne 63. Birkhäuser Verlag, Basel (2003)

    Book  Google Scholar 

  17. Shafarevich, I.R.: Basic algebraic geometry. 2. Schemes and complex manifolds, 2nd edn. Springer, Berlin (1994)

  18. Wang, B.: Algebraic surfaces with zero-dimensional cohomology support locus. Taiwan. J. Math. 22(3), 607–614 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Zhixian Zhu for useful discussions. The authors thank the Mathematics Departments at East China Normal University (Shanghai, China) and University of Science and Technology of China (Hefei, China) for hospitality during the preparation of this work. The first author is partially supported by Nero Budur’s research project G0B2115N from the Research Foundation of Flanders. The second author is partially supported by the Simons Foundation Collaboration Grant #567077 and by the Romanian Ministry of National Education, CNCS-UEFISCDI, grant PN-III-P4-ID-PCE-2016-0030. The third author is partially supported by NSF grant DMS-1701305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurentiu Maxim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Maxim, L. & Wang, B. Generic vanishing for semi-abelian varieties and integral Alexander modules. Math. Z. 293, 629–645 (2019). https://doi.org/10.1007/s00209-018-2194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2194-y

Keywords

Mathematics Subject Classification

Navigation