Skip to main content
Log in

On the strong maximum principle for nonlocal operators

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we derive a strong maximum principle for weak supersolutions of nonlocal equations of the form

$$\begin{aligned} Iu=c(x) u \qquad \text { in }\,\Omega , \end{aligned}$$

where \(\Omega \subset \mathbb {R}^N\) is a domain, \(c\in L^{\infty }(\Omega )\) and I is an operator of the form

$$\begin{aligned} Iu(x)=P.V.\int \limits _{\mathbb {R}^N}(u(x)-u(y))j(x-y)\ dy \end{aligned}$$

with a nonnegative kernel function j. We formulate minimal positivity assumptions on j corresponding to a class of operators, which includes highly anisotropic variants of the fractional Laplacian. Somewhat surprisingly, this problem leads to the study of general lattices in \(\mathbb {R}^N\). Our results extend to the regional variant of the operator I and, under weak additional assumptions, also to the case of x-dependent kernel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in the following we use the notation \(a\wedge b=\min \{a,b\}\) for \(a,b\in \mathbb {R}\).

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Stat. 20(2), 293–335 (2000)

    MATH  Google Scholar 

  3. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincare Anal. Non Linaire 31, 23–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A., Roquejoffre, J.-M., Sire, Y.: Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. (JEMS) 12(5), 1151–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dyda, B., Kassmann, M.: Regularity estimates for elliptic nonlocal operators (2015). Preprint https://arxiv.org/pdf/1509.08320v2.pdf

  6. Dyda, B., Kassmann, M.: Function spaces and extension results for nonlocal Dirichlet problems (2016). Preprint https://arxiv.org/pdf/1612.01628v1.pdf

  7. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  8. Fall, M.M., Weth, T.: Liouville theorems for a general class of nonlocal operators. Potential Anal. 45, 187–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Commun. Partial Differ. Equ. 38(9), 1539–1573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. 279, 779–809 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. García-Melián, J., Rossi, J.D.: Maximum and antimaximum principles for some nonlocal diffusion operators. Nonlinear Anal. 71(12), 6116–6121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  13. Grisvard, P.: SIAM Classics in Applied Mathematics. Elliptic problems in nonsmooth domains. SIAM, Philadelphia (2011)

    Google Scholar 

  14. Guan, Q.Y., Ma, Z.M.: Boundary problems for fractional Laplacians. Stoch. Dyn. 5(3), 385–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacob, N.: Pseudo Differential Operators and Markov Processes, vol. I, II, III. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  16. Jarohs, S., Weth, T.: Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Ann. Mat. Pura Appl. 195.1(4), 273–291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jarohs, S.: Symmetry via Maximum Principles for Nonlocal Nonlinear Boundary Value Problems. Doctoral thesis (2015)

  18. Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. J. Eur. Math. Soc. 19(4), 983–1011 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Musina, R., Nazarov, A.I.: Strong maximum principles for fractional Laplacians (2017). Preprint https://arxiv.org/pdf/1612.01043v2.pdf

  20. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: I Functional Analysis. Academic Press, San Diego (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Moritz Kassmann for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Weth.

Appendix

Appendix

In this section we give the proof of Lemmas 5.5 and 5.6. So in the following, we let \(v_1,\ldots , v_N \in \mathbb {R}^N\) be linearly independent, and we let \(G:=\sum \nolimits _{k=1}^{N}\mathbb {Z}v_k \subset \mathbb {R}^N\) be the corresponding lattice. We recall Lemma 5.5.

Lemma A.1

Let \(x_0 \in \mathbb {R}^N\) and \(r>\frac{1}{2}\sum \nolimits _{k=1}^N|v_k|\). Then \(B_r(x_0) \cap G\ne \emptyset \).

Proof

Consider the fundamental domain \(\Pi := \bigl \{\sum \nolimits _{k=1}^N \alpha _k v_k \,:\, -\frac{1}{2} \le \alpha _k \le \frac{1}{2}\,\, \hbox {for}\,\, k=1,\dots ,N \bigr \}.\) Since the translates \(v + \Pi \), \(v \in G\) cover the whole space \(\mathbb {R}^N\), there exists \(v \in G\) with \(x_0 -v \in \Pi \). Hence \(x_0 -v = \sum \nolimits _{k=1}^N \alpha _k v_k\) with some \(\alpha _k \in [-\frac{1}{2},\frac{1}{2}]\), \(k=1,\dots ,N\) and therefore \(|x_0 - v| \le \frac{1}{2} \sum \nolimits _{k=1}^N |v_k|<r\). Consequently, \(v \in G \cap B_r(x_0)\), so that \(G \cap B_r(x_0) \not = \varnothing .\)\(\square \)

We now turn to the proof of Lemma 5.6. It will be convenient to use the following definition.

Definition A.2

Let \(A \subset \mathbb {R}^N\) be an arbitrary subset, and let \(x, x' \in A\) such that \(x-x' \in G\). In the following, a G-path in A from x’ to x is defined as an ordered set of points \(w_0,\ldots , w_n\in A\) such that \(w_0=x'\), \(w_n=x\) and

$$\begin{aligned} w_{\ell }-w_{\ell -1} \in G_*:=\{ \pm v_1,\dots , \pm v_N\} \qquad \text {for }\,\ell = 1,\dots ,N. \end{aligned}$$

With this definition, we may now reformulate Lemma 5.6 as follows.

Lemma A.3

For every \(\rho \ge \sum \nolimits _{k=1}^N |v_k|\) and every \(x,x' \in G\) with \(|x-x'|<\rho \) there exists a G-path in \(B_{4^{N-1} \rho }(x')\) from \(x'\) to x.

Proof

Without loss, we may assume that \(x'=0\) in the following. We consider the affine subspaces

$$\begin{aligned} {{\mathscr {W}}}_0:= \{0\},\qquad {{\mathscr {W}}}_j:=\sum \limits _{i=1}^{j} \mathbb {R}v_i , \qquad j=1,\dots ,N \end{aligned}$$

and the sublattices

$$\begin{aligned} G_{j}:= \sum _{k=1}^{j} \mathbb {Z}v_k = G \cap {{\mathscr {W}}}_j,\qquad j=1,\dots ,N. \end{aligned}$$

We then prove the following claim by induction on j.

Claim A

Let \(j \in \{1,\dots ,N\}\). For every \(\rho \ge \sum \nolimits _{k=1}^N |v_k|\) and every \(x \in G_j\) with

$$\begin{aligned} |x|< \rho + \frac{1}{2} \sum _{i=1}^{j-1}|v_j|\qquad \text {and}\qquad \text {dist}(x,{{\mathscr {W}}}_{j-1})< \rho \end{aligned}$$

there exists a G-path in \(B_{4^{j-1} \rho }(0)\) from 0 to x.

This is true for \(j=1\), since in this case \(x= k v_1\) for some \(k \in \mathbb {Z}\), \(|x|= \text {dist}(x,{{\mathscr {W}}}_0) < \rho \), and there is an obvious one-dimensional G-path in \(B_{\rho }(0)\) from 0 to x.

We now assume that Claim A is true for some fixed \(j \in \{1,\dots ,N-1\}\), i.e.

$$\begin{aligned} \left\{ \begin{aligned}&\hbox {For every} \rho \ge \sum \limits _{k=1}^N |v_k| \hbox {and every} y \in G_{j}\hbox { with }|y|< \rho + \frac{1}{2} \sum _{i=1}^{j-1}|v_i|\\&\text { and }\text {dist}(y,{{\mathscr {W}}}_{j-1})< \rho \hbox { there exists a }G\hbox {-path in }B_{4^{j-1} \rho }(0)\hbox { from 0 to }y. \end{aligned} \right. \end{aligned}$$
(A.1)

We fix \(\rho \ge \sum \nolimits _{i=1}^{N}|v_i|\), and we suppose by contradiction that Claim A is false for \(j+1\) and this choice of \(\rho \). Then there exists \(x= y + k v_{j+1} \in G_{j+1}\) with \(y \in G_{j}\) and \(k \in \mathbb {Z}\) such that

$$\begin{aligned} |x|< \rho + \frac{1}{2} \sum _{i=1}^{j}|v_i|, \qquad \text {dist}(x,{{\mathscr {W}}}_{j})< \rho , \end{aligned}$$
(A.2)

and such that there does not exist a G-path in \(B_{4^{j}\rho }(0)\) from 0 to x. Without loss we may assume that \(k \ge 0\), and that k is chosen minimally with this property. In the case \(k=0\) we have \(x=y\) and thus

$$\begin{aligned} |x|< \rho + \frac{1}{2} \sum _{i=1}^{j}|v_i| \le 2\rho , \qquad \text {dist}(x,{{\mathscr {W}}}_{j-1}) \le |x|< 2\rho , \end{aligned}$$

so that by (A.1)—applied with \(2 \rho \) in place of \(\rho \)—there exists a G-path in \(B_{4^{j-1} 2\rho }(0) \subset B_{4^j \rho }(0)\) from 0 to x. This contradicts our choice of x, and thus we have \(k>0\).

Let \(x_1=y+(k-1)v_{j+1}\), and let \(x_1^* \in {{\mathscr {W}}}_{j}\) be the orthogonal projection of \(x_1\) on \({{\mathscr {W}}}_{j}\), so that

$$\begin{aligned} |x_1^*| \le |x_1| \qquad \text {and}\qquad |x_1-x_1^*| =\text {dist}(x_1,{{\mathscr {W}}}_{j}) \le |x_1|. \end{aligned}$$
(A.3)

Since the sets \(\bigl \{y_*+ \sum \nolimits _{i=1}^{j}\alpha _iv_i\;:\; -\frac{1}{2} \le \alpha _i\le \frac{1}{2}\hbox { for}\ i=1,\ldots , j\bigr \}\), \(y_*\in G_{j}\) cover \({{\mathscr {W}}}_{j}\), there exists \(y^* \in G_{j}\) and \(\alpha _i \in [-\frac{1}{2},\frac{1}{2}]\) with \(x_1^* = y^* + \sum \nolimits _{i=1}^{j} \alpha _i v_i\). The point \(x':=x_1- y^*\) then satisfies

$$\begin{aligned} \text {dist}(x',{{\mathscr {W}}}_{j})=\text {dist}(x_1,{{\mathscr {W}}}_{j})&= (k-1) \, \text {dist}(v_{j+1},{{\mathscr {W}}}_{j}) \nonumber \\&\le k \,\text {dist}(v_{j+1},{{\mathscr {W}}}_{j})= \text {dist}(x,{{\mathscr {W}}}_{j}) < \rho \end{aligned}$$
(A.4)

and, by (A.3) and (A.4),

$$\begin{aligned} |x'|= & {} |x_1-y^*| \le |x_1-x_1^*| + |x_1^*-y^*| \le \text {dist}(x_1,{{\mathscr {W}}}_{j}) \nonumber \\&+\, \frac{1}{2}\sum _{i=1}^{j}|v_i| < \rho + \frac{1}{2}\sum _{i=1}^{j}|v_i|. \end{aligned}$$
(A.5)

By the minimality property of k, this implies the existence of a G-path \(\Gamma _1\) from 0 to \(x'\) in \(B_{4^{j}\rho }(0)\). Moreover, by (A.2) and (A.3),

$$\begin{aligned}&|y^*| \le |x_1^*| + \frac{1}{2}\sum _{i=1}^{j}|v_i| \le |x_1| + \frac{1}{2}\sum _{i=1}^{j}|v_i| \le |x|+|v_{j+1}| + \frac{1}{2}\sum _{i=1}^{j}|v_i| < \rho \\&\quad +\, \sum _{i=1}^{j+1}|v_j| \le 2 \rho , \end{aligned}$$

and thus also \(\text {dist}(y^*,{{\mathscr {W}}}_{j-1}) < 2\rho \). Thus (A.1)—applied with \(2 \rho \) in place of \(\rho \)—yields a G-path from 0 to \(y_*\) in \(B_{4^{j-1}2\rho }(0)\). By mere translation, this path gives rise to G-path \(\Gamma _2\) from \(x' = x_1 - y^*\) to \(x_1\) in \(B_{4^{j-1}2\rho }(x')\), whereas

$$\begin{aligned} B_{4^{j-1}2\rho }(x') \subset B_{4^{j} \rho }(0) \qquad \text {since }|x'| \le 2 \rho \,\text { by }\,(\mathrm{A.5}). \end{aligned}$$

Composing \(\Gamma _1\) and \(\Gamma _2\), we then get a G-path from 0 to \(x_1\) in \(B_{4^{j}\rho }(0)\). Simply adding \(x=y+ k v_j\) as an endpoint and using that \(x \in B_{4^{j}\rho }(0)\) by assumption, we finally obtain a G-path from 0 to x in \(B_{4^{j}\rho }(0)\). This contradicts our assumption and finishes the proof of Claim A for \(j+1\).

By induction, the proof of Claim A is thus finished. Applying Claim A with \(j=N\) and noting that \(\text {dist}(x,{{\mathscr {W}}}_{N-1}) \le |x|\) for every \(x \in G\), we finally deduce the claim of the lemma.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarohs, S., Weth, T. On the strong maximum principle for nonlocal operators. Math. Z. 293, 81–111 (2019). https://doi.org/10.1007/s00209-018-2193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2193-z

Keywords

Navigation