Skip to main content
Log in

The local Euler obstruction and topology of the stabilization of associated determinantal varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This work has two complementary parts, in the first part we compute the local Euler obstruction of generic determinantal varieties and apply this result to compute the Chern–Schwartz–MacPherson class of such varieties. In the second part we compute the Euler characteristic of the stabilization of an essentially isolated determinantal singularity (EIDS). The formula is given in terms of the local Euler obstruction and Gaffney’s \(m_{d}\) multiplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arbarello, E., Cornualba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves, Vol. I, volume 267 of Fundamental Principles of Mathematical Sciences. Springer, New York (1985)

    Google Scholar 

  2. Brasselet, J.-P.: Local Euler obstruction, old and new, XI Brazilian Topology Meeting (Rio Claro, 1998), pp. 140–147. World Sci. Publishing, River Edge, NJ (2000)

    Google Scholar 

  3. Brasselet, J.-P., Lê, D.T., Seade, J.: Euler obstruction and indices of vector fields. Topology 39(6), 1193–1208 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brasselet, J.-P., Schwartz, M.-H.: Sur les classes de Chern d’un ensemble analytique complexe. Astérisque 82–83, 93–147 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Bruns, W., Vetter, U.: Determinantal Rings. Springer, New York (1998)

    MATH  Google Scholar 

  6. Buchsbaum, D.A., Rim, D.S.: A generalized Koszul complex. II. Depth and multiplicity. Trans. AMS 111, 197–224 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chong, Chuan Chen, Khee Meng, Koh: Principles and Techniques in Combinatorics. World Scientific, River Edge (1992)

    Book  MATH  Google Scholar 

  8. Ebeling, W., Gusein-Zade, S.M.: On indices of \(1\)-forms on determinantal singularities. Proc. Steklov Inst. Math. 267(1), 113–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ebeling, W., Gusein-Zade, S.M.: Radial index and Euler obstruction of a 1-form on a singular variety. Geom. Dedicata 113, 231–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Forstneric̆, F.: Holomorphic flexibility properties of complex manifolds. Am. J. Math. 128(1), 239–270 (2006)

    Article  MathSciNet  Google Scholar 

  11. Gaffney, T.: Polar methods, invariants of pairs of modules and equisingularity. In: Gaffney, T., Ruas, M. (eds.) Real and Complex Singularities (São Carlos, 2002), pp. 113–136. Contemp. Math., 354, Amer. Math. Soc., Providence, RI, June (2004)

  12. Gaffney, T.: The Multiplicity polar theorem. arXiv:math/0703650v1 [math.CV]

  13. Gaffney, T.: Polar multiplicities and equisingularity of map germs. Topology 32, 185–223 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaffney, T.: Integral closure of modules and Whitney equisingularity. Inventiones 107, 301–22 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaffney, T., Rangachev, A.: Pairs of modules and determinatal isolated singularities. arXiv:1501.00201 [math.CV]

  16. Gaffney, T., Ruas, M. A. S.: Equisingularity and EIDS. arXiv:1602.00362 [math.CV]

  17. Goresky, M., MacPherson, R.: Stratified Morse theory. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  18. Gonzalez-Sprinberg, G.: Calcul de l’invariant local d’Euler pour les singulariteś quotient de surfaces, C. R. Acad. Sci. Paris Ser. A-B 288, A989–A992 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Gonzalez-Sprinberg, G.: L’ obstruction locale d’Euler et le théorème de MacPherson, Séminaire de géométrie analytique de l’E.N.S. 1978–1979

  20. Jorge Pérez, V.H., Saia, M.J.: Euler obstruction, polar multiplicities and equisingularityof map germs in \({\cal{O}}(n,p), n<p.\). Int. J. Math 17(8), 887–903 (2006)

    Article  MATH  Google Scholar 

  21. Kaliman, S.H., Zaidenberg, M.: A transversality theorem for holomorphic mappings and stability of Eisenman–Kobayashi measures. Trans. Am. Math. Soc. 348(2), 661–672 (1996)

    Article  MATH  Google Scholar 

  22. Kleiman, S.: The transversality of general translate. Compos. Math. 28, 287–297 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Kleiman, S., Thorup, A.: A geometric theory of the Buchsbaum–Rim multiplicity. J. Algebra 167, 168–231 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lê, D.T.: Vanishing cycles on complex analytic sets, Proc. Sympos., Res. Inst. Math. Sci., Kyoto, Univ. Kyoto, 1975. Sûrikaisekikenkyûsho Kókyûroku 266, 299–318 (1976)

    Google Scholar 

  25. Lê, D.T.: Complex analytic functions with isolated singularities. J. Algebraic Geom. 1(1), 83–99 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Lê, D.T., Teissier, B.: Variétés polaires Locales et classes de Chern des variétés singulières. Ann. Math. 114, 457–491 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lê, D.T., Teissier, B.: Limites d’espaces tangents en géométrie analytique. Comm. Math. Helv. 63(4), 540–578 (1988)

    MATH  Google Scholar 

  28. MacPherson, R.: Chern classes for singular algebraic varieties. Ann. Math. 100, 423–432 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Matsui, Y., Takeuchi, K.: A geometric degree formula for A-discriminants and Euler obstructions of toric varieties. Adv. Math. 226, 2040–2064 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Piene, R.: Polar classes of singular varieties. Ann. Sci. École Norm. Sup 11(4), 247–276 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Piene, R.: Cycles polaires et classes de Chern pour les varoétés projectives singulières, Introduction à la théorie des singularités, II, Travaux en Cours, (37), pp. 4–34. Hermann, Paris (1988)

    Google Scholar 

  32. Schurmann, J., Tibar, M.: Index formula for MacPherson cycles of affine algebraic varieties. Tohoku Math. J. (2) 62(1), 29–44 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Siersma, D.: A bouquet theorem for the Milnor fibre. J. Algebraic Geom. 4(1), 51–66 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Siesquén, N.C.C.: Euler obstruction of essentially isolated determinantal singularities. Topol. Appl. 234, 166–177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serre, J.P.: Algebre Locale. Multiplicities. Lecture Notes in Mathematics. 11 Springer, Berlin-New York (1965)

  36. Teissier, B.: Variétés polaires, II, Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981), pp. 314–491. Lecture Notes in Math, vol. 961. Springer, Berlin (1982)

  37. Thom, R.: Un lemme sur les applications differentiables. Bol. Soc. Mat. Mexicana 2(1), 59–71 (1956)

    MathSciNet  MATH  Google Scholar 

  38. Tibăr, M.: Bouquet decomposition of the Milnor fibre. Topology 35(1), 227–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trivedi, S.: Stratified transversality of holomorphic maps. Int. J. Math 24(13), 1350106–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, X.: Chern–Schwartz–MacPherson class of determinantal varieties. arXiv:1605.05380 [math.AG]

Download references

Acknowledgements

The authors are grateful to Jonathan Mboyo Esole, Thiago de Melo, Otoniel Silva, Jawad Snoussi and Xiping Zhang for their careful reading of the first draft of this paper and for their suggestions. We also thank the referee for his/her careful reading and for his/her suggestions and corrections to the final version of this paper. The first author was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazil, Grant PVE 401565/2014-9. The second author was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, Brazil, Grants 2015/16746-7 and 2017/09620-2 and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazil, Grants 474289/2013-3, 303641/2013-4 and 303046/2016-3 . The third author was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, Brazil, Grant 2014/00304-2 and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazil, Grant 305651/2011-0. This paper was written while the second author was visiting Northeastern University, Boston, USA. During this period the first author had also visited the Universidade de São Paulo at São Carlos, Brazil, and we would like to thank these institutions for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivaldo G. Grulha Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffney, T., Grulha, N.G. & Ruas, M.A.S. The local Euler obstruction and topology of the stabilization of associated determinantal varieties. Math. Z. 291, 905–930 (2019). https://doi.org/10.1007/s00209-018-2141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2141-y

Keywords

Mathematics Subject Classification

Navigation