Skip to main content
Log in

Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

There have been obtained many results on smooth linearization for diffeomorphisms, those results cannot be simply applied to nonautonomous difference equations. In this paper we investigate \(C^1\) smooth linearization for nonautonomous difference equations with a nonuniform strong exponential dichotomy. Reducing the linear part of the nonautonomous system, defined by a sequence of invertible linear operators on \(\mathbb {R}^d\), to a bounded linear operator on a Banach space, we discuss the spectrum and its spectral gaps. Then we obtain a gap condition for \(C^1\) linearization of such a nonautonomous difference equation. We finally extend the result to the infinite dimensional case. Our theorems improve known results even in the case of uniform strong exponential dichotomies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barreira, L., Dragičević, D., Valls, C.: Nonuniform hyperbolicity and admissibility. Adv. Nonlinear Stud. 14, 791–811 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barreira, L., Dragičević, D., Valls, C.: Existence of conjugacies and stable manifolds via suspensions. Electron. J. Differ. Eq. 2017(172), 1–11 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity. Encyclopedia of Mathematics and its Applications, vol. 115. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  4. Barreira, L., Valls, C.: Stability of Nonautonomous Differential Equations. Lecture Notes in Mathematics, vol. 1926. Springer, Berlin (2008)

  5. Barreira, L., Valls, C.: A Grobman–Hartman theorem for nonuniformly hyperbolic dynamics. J. Differ. Eq. 228, 285–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barreira, L., Valls, C.: Hölder Grobman–Hartman linearization. Discr. Contin. Dyn. Syst. 18, 187–197 (2007)

    Article  MATH  Google Scholar 

  7. Belitskii, G.R.: Functional equations and the conjugacy of diffeomorphism of finite smoothness class. Funct. Anal. Appl. 7, 268–277 (1973)

    Article  MathSciNet  Google Scholar 

  8. Belitskii, G.R.: Equivalence and normal forms of germs of smooth mappings. Russian Math. Surv. 33, 107–177 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brjuno, A.D.: Analytical form of differential equations. Trans. Moscow Math. Soc. 25, 131–288 (1971)

    MathSciNet  Google Scholar 

  10. Chaperon, M.: Invariant manifolds revisited. Tr. Mat. Inst. Steklova236, 428–446 (2002), dedicated to the 80th anniversary of Academician Evgenii Frolovich Mishchenko, Suzdal, 2000 (in Russian)

  11. Chen, X.-Y., Hale, J.K., Tan, B.: Invariant foliations for \(C^1\) semigroups in Banach spaces. J. Differ. Eq. 139, 283–318 (1997)

    Article  MATH  Google Scholar 

  12. Chicone, C.: Ordinary Differential Equations with Applications. Springer, New York (1999)

    MATH  Google Scholar 

  13. ElBialy, M.S.: Local contractions of Banach spaces and spectral gap conditions. J. Funct. Anal. 182, 108–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators, I. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  15. Hartman, P.: On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana 5, 220–241 (1960)

    MathSciNet  MATH  Google Scholar 

  16. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  17. Hirsch, M., Pugh, C.: Stable manifolds and hyperbolic sets. Proc. Symp. Pure Math. 14, 133–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oseledets, V.: A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–221 (1968)

    MATH  Google Scholar 

  19. Palis, J.: On the local structure of hyperbolic points in Banach spaces. An. Acad. Brasil. Ciênc. 40, 263–266 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Palmer, K.: A generalization of Hartman’s linearization theorem. J. Math. Anal. Appl. 41, 753–758 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pesin, Ya.: Characteristic Ljapunov exponents, and smooth ergodic theory. Russian Math. Surv. 32, 55–114 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Poincaré, H.: Sur le problème des trois corps et les équations de la dyanamique. Acta Math. 13, 1–270 (1890)

    MathSciNet  MATH  Google Scholar 

  23. Pugh, C.: On a theorem of P. Hartman. Am. J. Math. 91, 363–367 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rodrigues, H.M., Solà-Morales, J.: Linearization of class \(C^1\) for contractions on Banach spaces. J. Differ. Eq. 201, 351–382 (2004)

    Article  MATH  Google Scholar 

  25. Rodrigues, H.M., Solà-Morales, J.: Smooth linearization for a saddle on Banach spaces. J. Dyn. Differ. Eq. 16, 767–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rodrigues, H.M., Solà-Morales, J.: Differentiability with respect to parameters in global smooth linearization. J. Differ. Eq. 262, 3583–3596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sacker, R.J., Sell, G.R.: A spectral theory for linear differential systems. J. Differ. Eq. 27, 320–358 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Siegel, C.L.: Iteration of analytic functions. Ann. Math. 43, 607–612 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79, 809–824 (1957)

    Article  MATH  Google Scholar 

  30. Sternberg, S.: On the structure of local homeomorphisms of Euclidean \(n\)-space. Am. J. Math. 80, 623–631 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tan, B.: \({\sigma }\)-Hölder continuous linearization near hyperbolic fixed points in \(\mathbb{R}^n\). J. Differ. Eq. 162, 251–269 (2000)

    Article  MATH  Google Scholar 

  32. Wu, H., Li, W.: Poincaré type theorems for non-autonomous systems. J. Differ. Eq. 245, 2958–2978 (2008)

    Article  MATH  Google Scholar 

  33. Yoccoz, J.-C.: Linéarisation des germes de difféomorphismes holomorphes d\((\mathbb{C}, 0)\). C. R. Acad. Sci. Paris 36, 55–58 (1988)

    MATH  Google Scholar 

  34. Zhang, W.M., Zhang, W.N.: \(C^1\) linearization for planar contractions. J. Funct. Anal. 260, 2043–2063 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, W.M., Zhang, W.N.: Sharpness for \(C^1\) linearization of planar hyperbolic diffeomorphisms. J. Differ. Eq. 257, 4470–4502 (2014)

    Article  MATH  Google Scholar 

  36. Zhang, W.M., Zhang, W.N., Jarczyk, W.: Sharp regularity of linearization for \(C^{1, 1}\) hyperbolic diffeomorphisms. Math. Ann. 358, 69–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are ranked in alphabetic order. The author Davor Dragicevic is supported in part by the Croatian Science Foundation under the project IP-2014-09-2285 and by the University of Rijeka under the project number 17.15.2.2.01. The author Weinian Zhang is supported by NSFC grants #11771307 and #11521061. The author Wenmeng Zhang is supported by NSFC grant #11671061 and project of Chongqing Normal University 02030307-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenmeng Zhang.

Appendix: Global smooth linearization

Appendix: Global smooth linearization

In the proof of Theorem 2 we need a result on global smooth linearization, which can be extended from the local \(C^1\) linearization theorem given in [36].

Let \((X,\Vert \cdot \Vert )\) be a Banach space and let \(F:X\rightarrow X\) be a \(C^{1,1}\) diffeomorphism fixing the origin \(\mathbf{0}\) and let \(\mathbb {A}:=DF(\mathbf{0})\). Recall that F can be \(C^1\) linearized if the functional Eq. (4.6) has a solution \(\Phi \) which is a \(C^1\) diffeomorphism. Moreover, assume that F satisfies

$$\begin{aligned} \Vert DF(x)-\mathbb {A}\Vert \le \eta , \quad \forall x\in X, \end{aligned}$$
(5.1)

where \(\eta >0\) is a sufficiently small constant, and that the spectrum \(\sigma (\mathbb {A})\) satisfy (3.1). Then, by the Spectral Decomposition Theory (see, e.g., [14, p. 9]) one can further assume that the space X has a direct sum decomposition \( X=X_-\oplus X_+ \) with \(\mathbb {A}\)-invariant subspaces \(X_-\) and \(X_+\), that is,

$$\begin{aligned} \mathbb {A}=\mathrm{diag}(\mathbb {A}_-, \mathbb {A}_+), \end{aligned}$$
(5.2)

where \(\mathbb {A}_-:X_-\rightarrow X_-\) and \(\mathbb {A}_+:X_+\rightarrow X_+\) are both bounded linear operators such that

$$\begin{aligned} \sigma (\mathbb A_-)&=\sigma _-:=\bigcup _{i=1}^k \{ z\in \mathbb C: a_i \le |z|\le b_i<1\},\\ \quad \sigma (\mathbb A_+)&=\sigma _+:=\bigcup _{j=k+1}^r \{ z\in \mathbb C: 1<a_j \le |z|\le b_j \}. \end{aligned}$$

We have the following result.

Global smooth linearization theoremLetFand\(\mathbb {A}\)be given above and assume that the numbers\(a_i\)and\(b_i\)given in (3.1) satisfy (4.1). Then there exists a\(C^1\)diffeomorphism\(\Phi : X\rightarrow X\)such that Eq. (4.6) holds, i.e.,Fcan be\(C^1\)linearized inX.

Proof

First of all, we give some notations. Let \(C^0_b(\Omega ,Z_2)\) consist of all \(C^0\) maps h from \(\Omega \), an open subset of a Banach space \((Z_1,\Vert \cdot \Vert )\), into another Banach space \((Z_2,\Vert \cdot \Vert )\) such that \(\sup _{z\in \Omega }\Vert h(z)\Vert <\infty \). Clearly, \(C^0_b(\Omega ,Z_2)\) is a Banach space equipped with the supremum norm \(\Vert \cdot \Vert _{C^0_b(\Omega ,Z_2)}\) defined by

$$\begin{aligned} \Vert h\Vert _{C^0_b(\Omega ,Z_2)}:=\sup _{z\in \Omega }\Vert h(z)\Vert , \quad \forall h\in C^0_b(\Omega ,Z_2). \end{aligned}$$

For a constant \(\gamma >0\), let \(S_\gamma (\Omega ,Z_2)\) consist of all sequences \(u:=(u_n)_{n\ge 0}\subset C^0_b(\Omega ,Z_2)\) such that \( \sup _{n\ge 0}\{\gamma ^{-n}\Vert u_n\Vert _{C^0_b(\Omega ,Z_2)}\}<\infty . \) Then, \(S_\gamma (\Omega ,Z_2)\) is a Banach space equipped with the wighted norm \(\Vert \cdot \Vert _{S_{\gamma }(\Omega ,Z_2)}\) defined by

$$\begin{aligned} \Vert u\Vert _{S_{\gamma }(\Omega ,Z_2)}:=\sup _{n\ge 0}\left\{ \gamma ^{-n}\Vert u_n\Vert _{C^0_b(\Omega ,Z_2)}\right\} , \quad \forall u\in S_{\gamma }(\Omega ,Z_2). \end{aligned}$$

\(\square \)

Let \(f:=F-\mathbb {A}\) be the nonlinear term of F and let \(\pi _-\) and \(\pi _+\) be projections onto \(X_-\) and \(X_+\) respectively.

Our strategy is firstly to decouple F into a contraction and an expansion by straightening up the invariant foliations. In order to construct the (stable) invariant foliation, we need to study the Lyapunov–Perron equation (cf. [11])

$$\begin{aligned}&q_n(x,y_-)\nonumber \\&\quad =\mathbb {A}_-^n(y_--\pi _- x)+\sum _{m=0}^{n-1}\mathbb {A}_-^{n-m-1}\{\pi _- f(q_m(x,y_-)+F^m(x))-\pi _- f(F^m(x))\} \nonumber \\&\qquad -\sum _{m=n}^{\infty }\mathbb {A}_+^{n-m-1}\left\{ \pi _+ f(q_m(x,y_-)+F^m(x))-\pi _+ f(F^m(x))\right\} , \quad \forall n\ge 0, \end{aligned}$$
(5.3)

where \(q_n:X\times X_-\rightarrow X\) is unknown for every integer \(n\ge 0\). For our purpose of \(C^1\) linearization, we need to find a \(C^1\) solution \((q_n)_{n\ge 0}\) of Eq. (5.3), i.e., each \(q_n: X\times X_-\rightarrow X\) is \(C^1\).

Lemma 4

Let F and \(\mathbb {A}\) be given at the beginning of this section. Assume that the numbers \(a_{k+1}\), \(b_k\) and \(b_r\) given in (3.1) satisfy

$$\begin{aligned} b_kb_r<a_{k+1}. \end{aligned}$$
(5.4)

Then, for every neighborhood \( \Omega _d\subset \{(x,x_-)\in X\times X_-:\Vert (x,x_-)\Vert < d\} \) of \(\mathbf{0}\) with a given constant \(d> 0\), Eq. (5.3) has a unique solution

$$\begin{aligned} Q_d:=(q_n)_{n\ge 0}\in S_{\gamma _1}(\Omega _d,X) \end{aligned}$$

such that every \(q_n:\Omega _d\rightarrow X\) (\(n\ge 0\)) is of class \(C^1\), where \(\gamma _1\) is a positive constant satisfying \( b_k<\gamma _1<1. \)

We leave the proof after we finish the proof of the theorem. Remind that for every \(d>0\), we have obtained a solution \(Q_d:=(q_n)_{n\ge 0}\in S_{\gamma _1}(\Omega _d,X)\) of Eq. (5.3). On the other hand, by [11, Theorem 2.1] we know that, for every point \((x,y_-)\in X\times X_-\), Eq. (5.3) has a unique solution \(\tilde{Q}(x,y_-):=(\tilde{q}_n(x,y_-))_{n\ge 0}\subset X\) such that

$$\begin{aligned} \sup _{n\ge 0}\big \{\gamma _1^{-n}\Vert \tilde{q}_n(x,y_-)\Vert \big \}<\infty . \end{aligned}$$

By the uniqueness of \((\tilde{q}_n(x,y_-))_{n\ge 0}\) and the fact that \((q_n)_{n\ge 0}\in S_{\gamma _1}(\Omega _d,X)\), we have \( \tilde{Q}|_{\Omega _d}=Q_d. \) It means that \(\tilde{Q}\) is a global \(C^1\) solution of Eq. (5.3). Hence the global (stable) invariant foliation can be constructed by

$$\begin{aligned} \mathcal {M}_s(x):=\{x+\tilde{q}_0(x,y_-):y_-\in X_-\}, \quad \forall x\in X. \end{aligned}$$

The unstable invariant foliation can be obtained by considering the inverse of F under the condition that

$$\begin{aligned} a_1a_{k+1}>b_k. \end{aligned}$$

Therefore, by [31, Theorem 3.1], there exists a homeomorphism \(\Psi :X\rightarrow X\), which and its inverse \(\Psi ^{-1}:X\rightarrow X\) are both \(C^{1}\) such that

$$\begin{aligned} \Psi \circ F&=F_-\circ \pi _-\Psi +F_+\circ \pi _+\Psi , \end{aligned}$$

where \(F_-: X_-\rightarrow X_-\) and \(F_+:X_+\rightarrow X_+\) are both \(C^{1,1}\) diffeomorphisms such that \(DF_-(\mathbf{0})=\mathbb {A}_-\) and \(DF_+(\mathbf{0})=\mathbb {A}_+\). Recall that \(\mathbb {A}_-\) and \(\mathbb {A}_+\) are given in (5.2) and have the spectra \(\sigma (\mathbb {A}_-)=\sigma _-\) and \(\sigma (\mathbb {A}_+)=\sigma _+\) respectively. Then we have the following result.

Lemma 5

Let \(F_-\) and \(F_+\) be given above. Assume that the numbers \(a_i\) and \(b_i\) given in (3.1) satisfy

$$\begin{aligned} b_i/a_i<b_k^{-1}, \quad \forall i=1, \ldots , k, \quad b_j/a_j < a_{k+1}, \quad \forall j=k+1, \ldots , r. \end{aligned}$$

Then there exist \(C^1\) diffeomorphisms \(\psi _-: X\rightarrow X\) and \(\psi _+: X\rightarrow X\) that linearize \(F_-\) and \(F_+\) respectively.

Having found \(\psi _-\) and \(\psi _+\) in Lemma 5, we finally put

$$\begin{aligned} \Phi =(\psi _-\circ \pi _-+\psi _+\circ \pi _+)\circ \Psi ,\quad \Phi ^{-1}=\Psi ^{-1}\circ (\psi _-^{-1}\circ \pi _-+\psi _+^{-1}\circ \pi _+). \end{aligned}$$

One verifies that \(\Phi :X\rightarrow X\) is a \(C^1\) diffeomorphism that linearizes F and the proof of the theorem is completed. \(\square \)

Proof of Lemma 4

Let

$$\begin{aligned} \Vert x\Vert :=\Vert x_-\Vert +\Vert x_+\Vert , \quad \Vert (x,y_-)\Vert :=\Vert x\Vert +\Vert y_-\Vert \end{aligned}$$

for \(x=x_-+x_+\in X\) and \(y_-\in X_-\). Choose two positive numbers \(\gamma _1\) and \(\gamma _2\) such that

$$\begin{aligned} b_k<\gamma _1<1<\gamma _2<a_{k+1} \quad \mathrm{and}\quad \gamma _1b_r<\gamma _2, \end{aligned}$$

which is possible because of (5.4). Let

$$\begin{aligned} E_1:=S_{\gamma _1}(\Omega _d,X) \quad \text{ and } \quad E_2:=S_{\gamma _2}(\Omega _d,\mathcal {L}(X\times X_-,X)) \end{aligned}$$

for short, where \(\mathcal {L}(X\times X_-,X)\) is the set of all bounded linear operators mapping \(X\times X_-\) into X. As mentioned at the beginning of the above proof for the theorem, we understand that \(E_1\) and \(E_2\) are both Banach spaces equipped the corresponding norms, denoted by \(\Vert \cdot \Vert _{E_1}\) and \(\Vert \cdot \Vert _{E_2}\) respectively. Define operators \(\mathcal {T}: E_1\rightarrow E_1\) and \(\mathcal {S}: E_1\times E_2\rightarrow E_2\) by

$$\begin{aligned}&(\mathcal {T} v)_n(x,y_-):=\mathbb {A}_-^n(y_--\pi _- x) \nonumber \\&\quad +\sum _{k=0}^{n-1}\mathbb {A}_-^{n-k-1}\left\{ \pi _- f(v_k(x,y_-)+F^k(x))-\pi _- f(F^k(x))\right\} \nonumber \\&\quad -\sum _{k=n}^{\infty }\mathbb {A}_+^{n-k-1}\left\{ \pi _+ f(v_k(x,y_-)+F^k(x))-\pi _+ f(F^k(x))\right\} \end{aligned}$$
(5.5)

and

$$\begin{aligned}&\mathcal {S}(v,w)_n(x,y_-) :=\Big (\mathrm{diag}(0,-\mathbb {A}_-^n),\mathbb {A}_-^n\Big ) \nonumber \\&\quad +\sum _{k=0}^{n-1}\mathbb {A}_-^{n-k-1}\{D(\pi _- f)(v_k(x,y_-)+F^k(x))(w_k(x,y_-)+DF^k(x)) \nonumber \\&\quad -D(\pi _- f)(F^k(x))DF^k(x)\} \nonumber \\&\quad -\sum _{k=n}^{\infty }\mathbb {A}_+^{n-k-1}\{D(\pi _+ f)(v_k(x,y_-)+F^k(x))(w_k(x,y_-)+DF^k(x)) \nonumber \\&\quad -D(\pi _+ f)(F^k(x))DF^k(x)\} \end{aligned}$$
(5.6)

respectively for all \(v:=(v_n)_{n\ge 0}\in E_1\) and all \(w:=(w_n)_{n\ge 0}\in E_2\). We claim the following:

  1. (A1)

    The operators \(\mathcal {T}\) and \(\mathcal {S}\) are well defined.

  2. (A2)

    The operator \(\mathcal {Q}: E_1\times E_2\rightarrow E_1\times E_2\) defined by

    $$\begin{aligned} \mathcal {Q}(v,w):=(\mathcal {T}v, \mathcal {S}(v,w)), \quad \forall (v,w)\in E_1\times E_2, \end{aligned}$$
    (5.7)

    has an attracting fixed point \((v_*,w_*)\in E_1\times E_2\), i.e.,

    $$\begin{aligned} \lim _{n\rightarrow \infty }\mathcal {Q}^n(v,w)=(v_*,w_*), \quad \forall (v,w)\in E_1\times E_2, \end{aligned}$$
    (5.8)

    where \(v_*\in E_1\) is the fixed point of \(\mathcal {T}\) and \(w_*\in E_2\) is the fixed point of \(\mathcal {S}(v_*,\cdot )\).

Notice that in [36] the same claims were proved in neighborhoods having sufficiently small diameters \(d>0\). The only difference in the present version is that we allow the diameter to be arbitrarily large. This causes a little change in the estimates, i.e., changing \(\Vert (x,x_-)\Vert \le 1\) into \(\Vert (x,x_-)\Vert \le d\). Thus, we obtain the following inequalities from [36]:

$$\begin{aligned}&\gamma _1^{-n}\Vert (\mathcal {T} v)_n(x,y_-)\Vert \le d+K\eta \Vert v\Vert _{E_1},\\&\gamma _2^{-n}\Vert \mathcal {S}(v, w)_n(x,y_-)\Vert \le 1+K_1\Vert v\Vert _{E_1}+K_2\eta \Vert w\Vert _{E_2},\\&\gamma _1^{-n}\Vert (\mathcal {T} v)_n(x,y_-)-(\mathcal {T} \tilde{v})_n(x,y_-)\Vert \le K\eta \,\Vert v-\tilde{v}\Vert _{E_1},\\&\gamma _2^{-n}\Vert \mathcal {S}(v, w)_n(x,y_-)-\mathcal {S}(\tilde{v}, \tilde{w})_n(x,y_-)\Vert \\&\quad \le (K_1\Vert w\Vert _{E_2}+K_2)\Vert v-\tilde{v}\Vert _{E_1}+K\eta \Vert w-\tilde{w}\Vert _{E_2}, \end{aligned}$$

where \(K_1,K_2\) and K are positive constants. The first two inequalities indicate that \(\mathcal {T}: E_1\rightarrow E_1\) and \(\mathcal {S}:E_1\times E_2\rightarrow E_2\) are well defined, i.e., (A1) holds. The third one means that \(\mathcal {T}\) is a contraction since \(\eta >0\) is small and therefore has a fixed point \(v_*\in E_1\). Moreover, setting \(v=\tilde{v}=v_*\) in the last inequality, we see that \(\mathcal {S}(v_*,\cdot ):E_2\rightarrow E_2\) is also a contraction and therefore (A2) is proved by the Fiber Contraction Theorem (see e.g. [17] or [12, p. 111]).

Having (A1) and (A2), we choose an initial point \(\tilde{v}:=0\in E_1\), whose derivative satisfies \(D\tilde{v}=0\in E_2\). Moreover, it is obvious that each \((\mathcal {T}\tilde{v})_n\) is \(C^1\) due to (5.5). Then, by the definitions (5.5)–(5.7) of \(\mathcal {T}, \mathcal {S}\) and \(\mathcal {Q}\), one checks that \( \mathcal {Q}(\tilde{v}, D\tilde{v})=(\mathcal {T}\tilde{v}, D(\mathcal {T}\tilde{v})), \) where \(D(\mathcal {T}\tilde{v}):=(D(\mathcal {T}\tilde{v}_n))_{n\ge 0}\). This enables us to prove inductively that

$$\begin{aligned} \mathcal {Q}^n(\tilde{v}, D\tilde{v})=(\mathcal {T}^n\tilde{v}, D(\mathcal {T}^n\tilde{v})), \quad \forall n\ge 0. \end{aligned}$$
(5.9)

Combining (5.8) with (5.9) we get \(\lim _{n\rightarrow \infty }\mathcal {T}^n\tilde{v}=v_*\) and \(\lim _{n\rightarrow \infty }D(\mathcal {T}^n\tilde{v})=w_*\), which implies that \(v_*\in E_1\) such that \(dv_*=w_*\in E_2\). Since \(v_*\) is the fixed point of \(\mathcal {T}\), it is a solution of the Lyapunov–Perron Eq. (5.3). Thus, the lemma is proved. \(\square \)

Proof of Lemma 5

According to [36, Lemma 10] we know that such \(\psi _-\) and \(\psi _+\) exist in a small neighborhood U of \(\mathbf{0}\). We now extend them into the whole space X. In what follows, we only consider the expansion \(F_+\) since the case of contraction \(F_-\) can be solved by considering its inverse. Choose a sphere \(U_0\in U\) such that \( U_0\subset \mathrm{int}\, F_+(U_0)\subset U, \) where \(\mathrm{int}\) denotes the interior of the set \(F_+(U_0)\), and define

$$\begin{aligned} X_i:=F_+^{i+1}(U_0)\backslash F_+^{i}(U_0),\quad V_0:=\psi _+(U_0),\quad Y_i:=\mathbb {A}_+^{i+1} (V_0)\backslash \mathbb {A}_+^i(V_0) \end{aligned}$$

for all \(i\in \mathbb {N}\cup \{0\}\). It is clear that

$$\begin{aligned} X_i\cap X_j=\emptyset , \quad \forall i\ne j, \quad X_i\cap U_0=\emptyset , \quad&U_0\cup \bigcup _{i=0}^{\infty }X_i=X, \quad F_+(X_i)=X_{i+1},\\ Y_i\cap Y_j=\emptyset , \quad \forall i\ne j, \quad Y_i\cap V_0=\emptyset , \quad&V_0\cup \bigcup _{i=0}^{\infty }Y_i=X, \quad \mathbb {A}_+(Y_i)=Y_{i+1}. \end{aligned}$$

Then we define

$$\begin{aligned} \psi _0:=\psi _+|_{X_0},\quad \psi _i:=\mathbb {A}_+\circ \psi _{i-1}\circ F_+^{-1},\quad \forall i\in \mathbb {N}, \end{aligned}$$

and define the global solution \(\psi _*\) by

$$\begin{aligned} \psi _*(x):= \left\{ \begin{array}{lll} \psi _+(x), &{} \quad \forall x\in U_0, \\ \psi _i(x), &{} \quad \forall x\in X_i, \quad \forall i\in \mathbb {N}, \end{array}\right. \end{aligned}$$

which is \(C^1\) in X. Moreover, one verifies that \(\psi _*(X_i)=Y_i\) for all \(i\in \mathbb {N}\cup \{0\}\) because

$$\begin{aligned} \psi _*\circ F_+^{i+1}(U_0)= \mathbb {A}_+^{i+1}\circ \psi _*(U_0)= \mathbb {A}_+^{i+1}(V_0), \quad \psi _*\circ F_+^{i}(U_0)= \mathbb {A}_+^{i}(V_0). \end{aligned}$$

Thus, \(\psi _*:X\rightarrow X\) is one-to-one and therefore it is a \(C^1\) diffeomorphism that linearizes \(F_+\). Without loss of generality, we still use \(\psi _+\) to denote \(\psi _*\) and the proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragičević, D., Zhang, W. & Zhang, W. Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy. Math. Z. 292, 1175–1193 (2019). https://doi.org/10.1007/s00209-018-2134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2134-x

Keywords

Mathematics Subject Classification

Navigation