Skip to main content
Log in

Complex geometry of moment-angle manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Moment-angle manifolds provide a wide class of examples of non-Kähler compact complex manifolds. A complex moment-angle manifold \(\mathcal {Z}\) is constructed via certain combinatorial data, called a complete simplicial fan. In the case of rational fans, the manifold \(\mathcal {Z}\) is the total space of a holomorphic bundle over a toric variety with fibres compact complex tori. In general, a complex moment-angle manifold \(\mathcal {Z}\) is equipped with a canonical holomorphic foliation \({\mathcal {F}}\) which is equivariant with respect to the \(({\mathbb {C}}^\times )^m\)-action. Examples of moment-angle manifolds include Hopf manifolds of Vaisman type, Calabi–Eckmann manifolds, and their deformations. We construct transversely Kähler metrics on moment-angle manifolds, under some restriction on the combinatorial data. We prove that any Kähler submanifold (or, more generally, a Fujiki class \(\mathcal {C}\) subvariety) in such a moment-angle manifold is contained in a leaf of the foliation \({\mathcal {F}}\). For a generic moment-angle manifold \(\mathcal {Z}\) in its combinatorial class, we prove that all subvarieties are moment-angle manifolds of smaller dimension and there are only finitely many of them. This implies, in particular, that the algebraic dimension of \(\mathcal {Z}\) is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By a result of C. Taubes. See [37] for a simpler proof and references to earlier works.

References

  1. Amoros, J., Burger, M., Corlette, K., Kotschick, D., Toledo, D.: Fundamental Groups of Compact Kähler Manifolds. Mathematical Surveys and Monographs, vol. 44. American Mathematical Society, Providence (1996)

    Book  MATH  Google Scholar 

  2. Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  3. Audin, M.: The Topology of Torus Actions on Symplectic Manifolds. Progress in Mathematics, vol. 93. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  4. Bahri, A., Bendersky, M., Cohen, F.R., Gitler, S.: The polyhedral product functor: a method of computation for moment-angle complexes, arrangements and related spaces. Adv. Math. 225(3), 1634–1668 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Battaglia, F., Zaffran, D.: Foliations modelling nonrational simplicial toric varieties. Int. Math. Res. Not. (2015). arXiv:1108.1637

  6. Bogomolov, F.: Holomorphic tensors and vector bundles on projective varieties. Izv. Akad. Nauk SSSR Ser. Mat. 42(6), 1227–1287 (1978). (Russian); Math. USSR Izv. 13(3), 499–555 (1979). (English)

  7. Bosio, F., Meersseman, L.: Real quadrics in \({\mathbb{C}}^n\), complex manifolds and convex polytopes. Acta Math. 197(1), 53–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brunella, M.: A characterization of Inoue surfaces. Comment. Math. Helv. 88(4), 859–874 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchdahl, N.P.: On compact Kähler surfaces. Ann. Inst. Fourier (Grenoble) 49(1), 287–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buchstaber, V., Panov, T.: Torus actions, combinatorial topology and homological algebra. Uspekhi Mat. Nauk 55(5), 3–106 (2000). (Russian); Russian Math. Surv. 55(5), 825–921 (2000). (English)

  11. Buchstaber, V., Panov, T.: Toric Topology. Mathematical Surveys and Monographs, vol. 204. American Mathematical Society, Providence (2015)

    Google Scholar 

  12. Chiose, I., Toma, M.: On compact complex surfaces of Kähler rank one. Am. J. Math. 135(3), 851–860 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    Google Scholar 

  14. Cupit-Foutou, S., Zaffran, D.: Non-Kähler manifolds and GIT-quotients. Math. Z. 257(4), 783–797 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Demailly, J.-P.: Complex Analytic and Differential Geometry. A book project. http://www-fourier.ujf-grenoble.fr/~demailly/documents.html

  16. Demailly, J.-P., Paun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry. Progress in Mathematics, vol. 155. Birkhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  18. Dumitrescu, S.: Structures géométriques holomorphes sur les variétés complexes compactes. Ann. Sci. École Norm. Sup. (4) 34(4), 557–571 (2001). (French)

    Google Scholar 

  19. Dumitrescu, S.: Métriques riemanniennes holomorphes en petite dimension. Ann. Inst. Fourier (Grenoble) 51(6), 1663–1690 (2001). (French)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics, vol. 168. Springer, New York (1996)

    Book  Google Scholar 

  21. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematical Studies, vol. 131. Princeton University Press, Princeton (1993)

    Book  Google Scholar 

  22. Gauduchon, P., Ornea, L.: Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier (Grenoble) 48(4), 1107–1127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gitler, S., López de Medrano, S.: Intersections of quadrics, moment-angle manifolds and connected sums. Geom. Topol. 17(3), 1497–1534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grbić, J., Theriault, S.: The homotopy type of the polyhedral product for shifted complexes. Adv. Math. 245, 690–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harvey, R., Lawson, H.B.: An intrinsic characterisation of Kähler manifolds. Invent. Math. 74(2), 169–198 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ishida, H.: Complex manifolds with maximal torus actions. Preprint (2013). arXiv:1302.0633

  27. Kamishima, Y., Ornea, L.: Geometric flow on compact locally conformally Kahler manifolds. Tohoku Math. J. (2) 57(2), 201–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kato, M.: On a Characterization of Submanifolds of Hopf Manifolds. Complex Analysis and Algebraic Geometry, pp. 191–206. Iwanami Shoten, Tokyo (1977)

    Book  Google Scholar 

  29. Lamari, A.: Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1), 263–285 (1999). (French)

    Article  MathSciNet  MATH  Google Scholar 

  30. Loeb, J.-J., Nicolau, M.: On the complex geometry of a class of non-Kählerian manifolds. Israel J. Math. 110, 371–379 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meersseman, L.: A new geometric construction of compact complex manifolds in any dimension. Math. Ann. 317, 79–115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Meersseman, L., Verjovsky, A.: Holomorphic principal bundles over projective toric varieties. J. Reine Angew. Math. 572, 57–96 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Moishezon, B.: On \(n\)-dimensional compact complex varieties with \(n\) algebraically independent meromorphic functions. I. Izv. Akad. Nauk SSSR Ser. Mat. 30, 133–174 (1966). (Russian); Am. Math. Soc. Transl. II. Ser. 63, 51–177 (1967). (English)

  34. Oeljeklaus, K., Toma, M.: Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier (Grenoble) 55(1), 161–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ornea, L., Verbitsky, M.: Locally conformally Kähler manifolds with potential. Math. Ann. 348(1), 25–33 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ornea, L., Verbitsky, M.: Oeljeklaus–Toma manifolds admitting no complex subvarieties. Math. Res. Lett. 18(4), 747–754 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Panov, D., Petrunin, A.: Telescopic actions. Geom. Funct. Anal. 22(6), 1814–1831 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Panov, T.: Geometric structures on moment-angle manifolds. Uspekhi Mat. Nauk 68(3), 111–186 (2013). (Russian); Russian Math. Surv. 68(3), 503–568. (2013). (English)

  39. Panov, T., Ustinovsky, Yu.: Complex-analytic structures on moment-angle manifolds. Mosc. Math. J. 12(1), 149–172 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Tambour, J.: LVMB manifolds and simplicial spheres. Ann. Inst. Fourier (Grenoble) 62(4), 1289–1317 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vaisman, I.: A geometric condition for an l.c.K. manifold to be Kähler. Geom. Dedicata 10(1–4), 129–134 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Verbitskaya, S.: Curves on Oeljeklaus–Toma manifolds. Funktsional. Anal. i Prilozhen. 48(3), 84–88 (2014). (Russian); Funct. Anal. Appl. 48(3), 223–226 (2014). (English)

  43. Verbitsky, M.: Theorems on the vanishing of cohomology for locally conformally hyper-Kähler manifolds. Tr. Mat. Inst. Steklova 246, 64–91 (2004). (Russian); Proc. Steklov Inst. Math. 246(3), 54–78 (2004). (English)

  44. Verbitsky, M.: Stable bundles on positive principal elliptic fibrations. Math. Res. Lett. 12(2–3), 251–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Verbitsky, M.: Holomorphic bundles on diagonal Hopf manifolds. Izv. Ross. Akad. Nauk Ser. Mat. 70(5), 13–30 (2006). (Russian); Izv. Math. 70(5), 867–882 (2006). (English)

  46. Verbitsky, M.: Positive toric fibrations. J. Lond. Math. Soc. (2) 79(2), 294–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the referees for their most helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Panov.

Additional information

The first and the second authors were supported by the Russian Science Foundation, RSCF Grant 14-11-00414 at the Steklov Institute of Mathematics. The third author was partially supported by the RSCF Grant 14-21-00053 within the AG Laboratory NRU-HSE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, T., Ustinovskiy, Y. & Verbitsky, M. Complex geometry of moment-angle manifolds. Math. Z. 284, 309–333 (2016). https://doi.org/10.1007/s00209-016-1658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1658-1

Keywords

Mathematics Subject Classification

Navigation