Skip to main content
Log in

Donaldson–Thomas invariants for complexes on abelian threefolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Donaldson–Thomas invariants for moduli spaces M of perfect complexes on an abelian threefold X are usually zero. A better object is the quotient \({K=[M/X\times\widehat{X}]}\) of complexes modulo twist and translation. Roughly speaking, this amounts to fixing not only the determinant of the complexes in M, but also that of their Fourier–Mukai transform. We modify the standard perfect symmetric obstruction theory for perfect complexes to obtain a virtual fundamental class, giving rise to a DT-type invariant of the quotient K. It is insensitive to deformations of X, and respects derived equivalence. As illustrations we examine the case of Picard bundles and of Hilbert schemes of points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18 (1983), 4, 755–782 (1984)

    Google Scholar 

  2. Behrend K.: Donaldson–Thomas type invariants via microlocal geometry. Ann. Math. (2) 170(3), 1307–1338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Behrend K., Fantechi B.: The intrinsic normal cone. Invent. Math. 128(1), 45–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrend K., Fantechi B.: Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2(3), 313–345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkenhake, C., Lange, H.: Complex abelian varieties. In: Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 302, 2nd edn. Springer, Berlin (2004)

  6. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol. 21. Springer, Berlin (1990)

  7. Cheah J.: On the cohomology of Hilbert schemes of points. J. Algebraic Geom. 5(3), 479–511 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Huybrechts D.: Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  9. Huybrechts D., Thomas R. P.: Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes. Math. Ann. 346(3), 545–569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matsusaka T.: On a characterization of a Jacobian variety. Memo. Coll. Sci. Univ. Kyoto. Ser. A Math. 32, 1–19 (1959)

    MathSciNet  MATH  Google Scholar 

  11. Morikawa H.: Cycles and endomorphisms of abelian varieties. Nagoya Math. J. 7, 95–102 (1954)

    MathSciNet  MATH  Google Scholar 

  12. Mukai S.: Semi-homogeneous vector bundles on an Abelian variety. J. Math. Kyoto Univ. 18(2), 239–272 (1978)

    MathSciNet  MATH  Google Scholar 

  13. Mukai S.: Duality between D(X) and \({D(\hat X)}\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Mukai, S.: Fourier Functor and its Application to the Moduli of Bundles on an Abelian Variety, Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, pp. 515–550. North-Holland, Amsterdam (1987)

  15. Mukai, S.: Abelian variety and spin representation. In: Proceedings of Symposium “Hodge Theory and Algebraic Geometry” (Sapporo), pp. 110–135 (in Japanese, English translation: Univ. of Warwick preprint, 1998) (1994)

  16. Mumford, D.: Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer, Berlin (1965)

  17. Orlov D.O.: Derived categories of coherent sheaves on abelian varieties and equivalences between them. Izv. Ross. Akad. Nauk Ser. Mat. 66(3), 131–158 (2002)

    MathSciNet  Google Scholar 

  18. Polishchuk A.: Abelian varieties, theta functions and the Fourier transform, Cambridge Tracts in Mathematics, vol. 153. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  19. Rosay, F.: Some remarks on the group of derived autoequivalences. arXiv:0907.3880v1 [math.AG] (2009)

  20. Thomas R.P.: A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations. J. Differ. Geom. 54(2), 367–438 (2000)

    MATH  Google Scholar 

  21. Yang J.-H.: Holomorphic vector bundles over complex tori. J. Korean Math. Soc. 26(1), 117–142 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Yoshioka K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321(4), 817–884 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Gulbrandsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulbrandsen, M.G. Donaldson–Thomas invariants for complexes on abelian threefolds. Math. Z. 273, 219–236 (2013). https://doi.org/10.1007/s00209-012-1002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1002-3

Mathematics Subject Classification

Navigation