Skip to main content
Log in

Deitmar’s versus Toën-Vaquié’s schemes over \({\mathbb{F}_{1}}\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Deitmar introduced schemes over \({\mathbb {F}_{1}}\), the so-called “field with one element”, as certain spaces with an attached sheaf of monoids, generalizing the definition of schemes as ringed spaces. On the other hand, Toën and Vaquié defined them as particular Zariski sheaves over the opposite category of monoids, generalizing the definition of schemes as functors of points. We show the equivalence between Deitmar’s and Toën-Vaquiés notions and establish an analog of the classical case of schemes over \({\mathbb {Z}}\). This result has been assumed by the leading experts on \({\mathbb {F}_{1}}\), but no proof was given. During the proof, we also conclude some new basic results on commutative algebra of monoids, such as a characterization of local flat epimorphisms and of flat epimorphisms of finite presentation. We also inspect the base-change functors from the category of schemes over \({\mathbb {F}_{1}}\) to the category of schemes over \({\mathbb {Z}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathematics, Vol. 269. Springer-Verlag, Berlin (1972). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat

  2. Atiyah M.F., Macdonald I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading (1969)

    MATH  Google Scholar 

  3. Cohn H.: Projective geometry over \({\mathbb{F}_1}\) and the Gaussian binomial coefficients. Am. Math. Monthly 111(6), 487–495 (2004). doi:10.2307/4145067

    Article  MATH  Google Scholar 

  4. Deitmar, A.: Schemes over \({\mathbb{F}_1}\). In: Number fields and function fields—two parallel worlds. Progr. Math. vol. 239, pp. 87–100. Birkhäuser Boston, Boston (2005)

  5. Demazure, M., Gabriel, P.: Groupes algébriques. Tome I:G éométrie algébrique, généralités, groupes commutatifs. Masson & Cie Éditeur, Paris (1970). (Avec un appendice Corps de classes local par Michiel Hazewinkel)

  6. Durov, N.: New approach to Arakelov geometry. arXiv:0704.2030v1 [math.AG] (2007)

  7. Gabriel P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    MathSciNet  MATH  Google Scholar 

  8. Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. (4), 228 (1960)

  9. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. (28), 255 (1966)

  10. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. (32), 361 (1967)

    Google Scholar 

  11. Hartshorne R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

    Google Scholar 

  12. Kashiwara M., Schapira P.: Categories and sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332. Springer, Berlin (2006)

    Google Scholar 

  13. Kato K.: Toric singularities. Am. J. Math. 116(5), 1073–1099 (1994). doi:10.2307/2374941

    Article  MATH  Google Scholar 

  14. Kelly, G.M.: Basic concepts of enriched category theory. Repr. Theory Appl. Categr. (10), vi+137 (2005). (Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714])

  15. Lazard D.: Autour de la platitude. Bull. Soc. Math. France 97, 81–128 (1969)

    MathSciNet  MATH  Google Scholar 

  16. López Peña, J., Lorscheid, O.: Mapping \({\mathbb{F}_1}\)-land: an overview of geometries over the field with one element. In: Proceedings of the Nashville and Baltimore conferences on \({\mathbb{F}_1}\), Johns Hopkins Univ. Press, arXiv:0909.0069v1 [math.AG] (2009) (to appear)

  17. Mac Lane S.: Categories for the working mathematician, graduate texts in mathematics, vol. 5, 2nd edn. Springer, New York (1998)

    Google Scholar 

  18. Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic. Universitext. Springer, New York (1994). (A first introduction to topos theory, Corrected reprint of the 1992 edition)

  19. Marty, F.: Relative Zariski open objects. arXiv:0712.3676v3 [math.AG] (2007)

  20. Stenström B.: Flatness and localization over monoids. Math. Nach. 48, 315–334 (1971)

    Article  MATH  Google Scholar 

  21. Tits, J.: Sur les analogues algébriques des groupes semi-simples complexes. In: Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pp. 261–289. Établissements Ceuterick, Louvain (1957)

  22. Toën, B.: Cours de master 2 : champs algébriques. Lecture notes of a Master course on Algebraic Stacks (2006). http://www.math.univ-toulouse.fr/~toen/m2.html

  23. Toën B., Vaquié M.: Au-dessous de Spec \({\mathbb Z}\). J. K-Theory 3(3), 437–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Vezzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vezzani, A. Deitmar’s versus Toën-Vaquié’s schemes over \({\mathbb{F}_{1}}\) . Math. Z. 271, 911–926 (2012). https://doi.org/10.1007/s00209-011-0896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0896-5

Keywords

Mathematics Subject Classification (2000)

Navigation