Skip to main content
Log in

Continuity of the Complex Monge–Ampère operator on compact Kähler manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove several approximation theorems of the complex Monge–Ampère operator on a compact Kähler manifold. As an application we prove the Cegrell type theorem on a complete description of the range of the complex Monge–Ampère operator in the class of ω-plurisubharmonic functions with vanishing complex Monge–Ampère mass on all pluripolar sets. As a by-product we obtain a stability theorem of solutions of complex Monge–Ampère equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blocki Z.: On the definition of the complex Monge–Ampère operator in \(\mathbb{C^2}\) . Math. Ann. 328, 415–423 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blocki Z.: The domain of definition of the complex Monge–Ampère operator. Am. J. Math. 128, 519–530 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blocki Z.: Uniqueness and stability for the complex Monge–Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52, 1697–1701 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blocki Z., Kolodziej S.: On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. (7) 135, 2089–2093 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bedford E., Taylor B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bedford E., Taylor B.A.: Uniqueness for the complex Monge–Ampèr equation for functions of logarithmic growth. Indiana Univ. Math. J. 38, 455–469 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bedford E., Taylor B.A.: Fine topology, Šilov boundary and \({(dd^c)^n}\) . J. Funct. Anal. 72, 225–251 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cegrell U.: Pluricomplex energy. Acta Math. 180(2), 187–217 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cegrell U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier 54, 159–179 (2004)

    MathSciNet  Google Scholar 

  10. Cegrell, U.: Convergence in capacity. Isaac Newton Institute for Math. Science Preprint Series NI01046-NPD, 2001, also available at arxiv.org: math. CV/0505218

  11. Calabi E.: On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology. Asymposium in honor of S.Lefschetz, pp. 78–89. Princeton University Press, Princeton (1957)

    Google Scholar 

  12. Cegrell U., Kolodziej S.: The equation of complex Monge–Ampère type and stability of solutions. Math. Ann. 334, 713–729 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guedj, V., Zeriahi, A.: The weighted Monge–Ampère energy of quasiplurisubhar-monic functions. Preprint, arXiv math.CV/061230

  14. Guedj V., Zeriahi A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Kiselman, C.O.: Sur la definition de l’opérateur de Monge–Ampère complexe. Analyse Complexe: Proceedings, Toulouse, pp. 139–150. LNM 1094, Springer, New York (1983)

  16. Kolodziej, S.: The complex Monge–Ampère equation and pluripotential theory. Mem. Am. Math. Soc. 178(840) (2005)

  17. Kolodziej S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kolodziej S.: The Monge–Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(3), 667–686 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kolodziej S.: The set of measures given by bounded solutions of the complex Monge–Ampère equation on compact Kähler manifolds. J. Lond. Math. Soc. (2) 72, 225–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xing Y.: Continuity of the complex Monge–Ampère operator. Proc. Am. Math. Soc. 124, 457–467 (1996)

    Article  MATH  Google Scholar 

  21. Xing Y.: Convergence in capacity. Ann. Inst. Fourier 58(5), 1839–1861 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Xing, Y.: A strong comparison principle of plurisubharmonic functions with finite pluricomplex energy. Michigan J. Math (to appear)

  23. Xing, Y.: The general definition of the complex Monge–Ampère operator on compact Kähler manifolds. Canad. J. Math. (to appear)

  24. Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. Comm. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y. Continuity of the Complex Monge–Ampère operator on compact Kähler manifolds. Math. Z. 263, 331–344 (2009). https://doi.org/10.1007/s00209-008-0420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0420-8

Keywords

Mathematics Subject Classification (2000)

Navigation