Skip to main content
Log in

Bauer–Furuta invariants under \({\mathbb{Z}_2}\) -actions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

S. Bauer and M. Furuta defined a stable cohomotopy refinement of the Seiberg–Witten invariants. In this paper, we prove a vanishing theorem of Bauer–Furuta invariants for 4-manifolds with smooth \({\mathbb{Z}_2}\) -actions. As an application, we give a constraint on smooth \({\mathbb{Z}_2}\) -actions on homotopy K3#K3, and construct a nonsmoothable locally linear \({\mathbb{Z}_2}\) -action on K3#K3. We also construct a nonsmoothable locally linear \({\mathbb{Z}_2}\) -action on K3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Bott R.: A Lefschetz fixed point formula for elliptic complexes II Applications. Ann. Math. 88, 451–491 (1968)

    Article  MathSciNet  Google Scholar 

  2. Bauer S.: A stable cohomotopy refinement of Seiberg–Witten invariants II. Invent. Math. 155(1), 21–40 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Bauer S.: Refined Seiberg–Witten invariants. In: Donaldson, S.K., Eliashberg, Y., Gromov, M. (eds) Different Faces of Geometry, Internet, Mathematical Series, Kluwer Academic/Plenum Publishers, New York (2004)

    Google Scholar 

  4. Bauer, S.: Almost complex 4-manifolds with vanishing first Chern class, math.GT/0607714 (preprint)

  5. Bauer S., Furuta M.: A stable cohomotopy refinement of Seiberg–Witten invariants: I. Invent. Math. 155, 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bredon G.E.: Equivariant Cohomology Theories, Lecture Notes in Mathematics, vol. 34. Springer, Berlin (1967)

    Google Scholar 

  7. Bryan J.: Seiberg–Witten theory and \({\mathbb{Z}/2^p}\) actions on spin 4-manifolds. Math. Res. Lett. 5(1–2), 165–183 (1998)

    MATH  MathSciNet  Google Scholar 

  8. Edmonds A.L.: Aspects of group actions on four-manifolds. Topol. Appl. 31(2), 109–124 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edmonds A.L., Ewing J.H.: Realizing forms and fixed point data in dimension four. Am. J. Math. 114, 1103–1126 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fang F.: Smooth group actions on 4-manifolds and Seiberg–Witten invariants. Int. J. Math. 9(8), 957–973 (1998)

    Article  MATH  Google Scholar 

  11. Freedman M.H., Quinn F.: Topology of 4-Manifolds, Princeton Mathematical Series, 39. Princeton University Press, Princeton (1990)

    Google Scholar 

  12. Furuta M., Kametani Y., Minami N.: Stable-homotopy Seiberg–Witten invariants for rational cohomology K3#K3’s. J. Math. Sci. Univ. Tokyo 8(1), 157–176 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Hattori A., Yoshida T.: Lifting compact group actions in fiber bundles. Jpn. J. Math. (N.S.) 2(1), 13–25 (1976)

    MathSciNet  Google Scholar 

  14. Hu S.: Homotopy Theory, Pure and Applied Mathematics, Vol VIII. Academic Press, New York (1959)

    Google Scholar 

  15. Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations. Annals of Mathematics Studies, No. 88. Princeton University Press, Princeton, University of Tokyo Press, Tokyo (1977)

  16. Kister J.M.: Microbundles are fibre bundles. Ann. Math. 80(2), 190–199 (1964)

    Article  MathSciNet  Google Scholar 

  17. Lashof, R., Rothenberg, M.: G-smoothing theory, Algebraic and geometric topology, Proc. Sympos. Pure Math. XXXII, Part 1, pp. 211–266, Am. Math. Soc., Providence (1978)

  18. Liu X., Nakamura N.: Pseudofree \({\mathbb{Z}/3}\) -actions on K3 surfaces. Proc. Am. Math. Soc 135(3), 903–910 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu X., Nakamura N.: Nonsmoothable group actions on elliptic surfaces. Topol. Appl. 155, 946–964 (2008)

    MATH  MathSciNet  Google Scholar 

  20. May, J.P. et al.: Equivariant homotopy and cohomology theory, CBMS, Vol 91, American Mathematical Society, Providence (1996)

  21. Morrison D.R.: On K3 surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nakamura N.: Mod p vanishing theorem of Seiberg–Witten invariants for 4-manifolds with \({\mathbb{Z}_p}\) -actions. Asian J. Math. 9(4), 731–748 (2006)

    Google Scholar 

  23. Szymik, M.: Bauer–Furuta invariants and Galois symmetries (preprint)

  24. tom Dieck T.: Transformation groups, de Gruyter Stud. Math. vol. 8. Springer, Berlin (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, N. Bauer–Furuta invariants under \({\mathbb{Z}_2}\) -actions. Math. Z. 262, 219–233 (2009). https://doi.org/10.1007/s00209-008-0370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0370-1

Keywords

Mathematics Subject Classification (2000)

Navigation