Skip to main content
Log in

Harmonicity of sections of sphere bundles

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the energy functional on the space of sections of a sphere bundle over a Riemannian manifold \((M,\langle \cdot, \cdot \rangle)\) equipped with the Sasaki metric and discuss the characterising condition for critical points. Furthermore, we provide a useful method for computing the tension field in some particular situations. Such a method is shown to be adequate for many tensor fields defined on manifolds M equipped with a G-structure compatible with \(\langle \cdot, \cdot \rangle\) . This leads to the construction of several new examples of differential forms which are harmonic sections or determine a harmonic map from \((M,\langle \cdot, \cdot \rangle)\) into its sphere bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Math. vol. 203. Birkhäuser, Basel (2002)

    Google Scholar 

  2. Bonan E. (1966). Sur le variétés riemanniennes a groupe d’holonomie G 2 ou Spin(7). C. R. Acad. Sci. Paris 262: 127–129

    MATH  MathSciNet  Google Scholar 

  3. Boyer C. and Galicki K. (2000). On Sasakian–Einstein geometry. Int. J. Math. 11: 873–909

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyer C., Galicki K. and Nakamaye M. (2003). On the geometry of Sasakian–Einstein 5-manifolds. Math. Ann. 325: 485–524

    Article  MATH  MathSciNet  Google Scholar 

  5. Bryant R.L. (1987). Metrics with exceptional holonomy. Ann. Math. 126: 525–576

    Article  Google Scholar 

  6. Chinea D. and González-Dávila J.C. (1990). A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. 156(4): 15–36

    Article  MATH  MathSciNet  Google Scholar 

  7. Chiossi, S., Salamon, S.: The intrinsic torsion of SU(3) and G 2-structures, Differential Geometry, Valencia 2001. World Sci. Publishing, Singapore, pp. 115–133 (2002)

  8. Eells J. and Lemaire L. (1978). A report on harmonic maps. Bull. Lond. Math. Soc. 10: 1–68

    Article  MATH  MathSciNet  Google Scholar 

  9. Eells J. and Lemaire L. (1988). Another report on harmonic maps. Bull. Lond. Math. Soc. 20: 385–524

    Article  MATH  MathSciNet  Google Scholar 

  10. Eells J. and Sampson J.H. (1964). Harmonic mappings of Riemannian manifolds. Am. J. Math. 86: 109–160

    Article  MATH  MathSciNet  Google Scholar 

  11. Cleyton R. and Swann A.F. (2004). Einstein metrics via intrinsic or parallel torsion. Math. Z. 247(3): 513–528

    Article  MATH  MathSciNet  Google Scholar 

  12. Fernández M. (1982). A classification of Riemannian manifolds with structure group Spin(7). Ann. Mat. Pura Appl. 143: 101–122

    Article  Google Scholar 

  13. Fernández M. and Gray A. (1982). Riemannian manifolds with structure group G 2. Ann. Mat. Pura Appl. 32(IV): 19–45

    Article  Google Scholar 

  14. Gil-Medrano O., González-Dávila J.C. and Vanhecke L. (2004). Harmonicity and minimality of oriented distributions. Israel J. Math. 143: 253–279

    Article  MATH  MathSciNet  Google Scholar 

  15. Gray, A.: Vector cross product on manifolds. Trans. Amer. Math. Soc. 141, 463–504 (1969). Correction 148, 625 (1970)

    Google Scholar 

  16. Gray A. (1971). Weak holonomy groups. Math. Z. 123: 290–300

    Article  MATH  MathSciNet  Google Scholar 

  17. Gray A. (1976). The structure of nearly Kähler manifolds. Math. Ann. 223: 233–248

    Article  MATH  MathSciNet  Google Scholar 

  18. Gray A. and Hervella L.M. (1980). The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123(4): 35–58

    Article  MATH  MathSciNet  Google Scholar 

  19. Harvey R. and Lawson H.B. (1982). Calibrated geometries. Acta Math. 148: 47–157

    Article  MATH  MathSciNet  Google Scholar 

  20. Lawson H.B. and Michelsohn M.L. (1989). Spin Geometry. Princeton University Press, New Jersey

    MATH  Google Scholar 

  21. Kashiwada T. (1971). A note on a Riemannian space with Sasakian 3-structure. Nat. Sci. Reps. Ochanomizu Univ. 22: 1–2

    MATH  MathSciNet  Google Scholar 

  22. Marrero J.C. (1992). The Local Structure of Trans-Sasakian Manifolds. Ann. Mat. Pura Appl. 162(4): 55–86

    MathSciNet  Google Scholar 

  23. Martín Cabrera F. (1996). On Riemannian manifolds with G 2-structures. Boll. Unione Mat. It. 9A(7): 99–112

    Google Scholar 

  24. Martín Cabrera F. (1995). On Riemannian manifolds with Spin(7)-structure. Publ. Math. Debrecen 46(3–4): 271–283

    MathSciNet  Google Scholar 

  25. Martín Cabrera F. (2004). Almost Quaternion-Hermitian Manifolds. Ann. Global Anal. Geom. 25: 277–301 arXiv:math.DG/0206115

    Article  MATH  MathSciNet  Google Scholar 

  26. Martín Cabrera F. (2005). Special almost Hermitian geometry. J. Geom. Phys. 55(4): 450–470 arXiv: math.DG/0409167

    Article  MATH  MathSciNet  Google Scholar 

  27. Sakai, T.: Riemannian Geometry. Transl. Math. Mon. 149. Amer. Math. Soc., Providence 1996

  28. Salvai M. (2002). On the energy of sections of trivializable sphere bundles. Rendiconti del Seminario Matematico dell’Universitáe Politecnico di Torino 60: 147–155

    MATH  MathSciNet  Google Scholar 

  29. Swann A.F. (1989). Aspects symplectiques de la géometrie quaternionique. C. R. Acad. Sci. Paris 308: 225–228

    MATH  MathSciNet  Google Scholar 

  30. Urakawa, H.: Calculus of variations and harmonic maps, Transl. of Math. Monographs 132. Amer. Math. Soc., Providence (1993)

  31. Vaisman I. (1979). Locally conformal Kähler manifolds with parallel Lee form. Rend. Mat. (6) 12(2): 263–284

    MATH  MathSciNet  Google Scholar 

  32. Wiegmink G. (1995). Total bending of vector fields on Riemannian manifolds. Math. Ann. 303: 325–344

    Article  MATH  MathSciNet  Google Scholar 

  33. Wood C.M. (1997). On the energy of a unit vector field. Geom. Dedicata 64: 319–330

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Martín Cabrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Dávila, J.C., Martín Cabrera, F. & Salvai, M. Harmonicity of sections of sphere bundles. Math. Z. 261, 409–430 (2009). https://doi.org/10.1007/s00209-008-0331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0331-8

Mathematics Subject Classification (2000)

Navigation