Skip to main content
Log in

Analysis of degenerate elliptic operators of Grušin type

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We analyse degenerate, second-order, elliptic operators H in divergence form on L 2(R n × R m). We assume the coefficients are real symmetric and a 1 H δ  ≥ H ≥ a 2 H δ for some a 1, a 2 > 0 where

$$H_\delta=-{\nabla}_{x_1}\cdot(c_{\delta_{1}}, \delta'_{1}(x_1),\nabla_{x_1})-c_{\delta_{2}}, \delta'_{2}(x_1)\,\nabla_{x_2}^2.$$

Here x 1R n, x 2R m and \({{c_{\delta_{i}},\delta'_{i}}}\) are positive measurable functions such that \({c_{\delta_{i,}} \delta'_{i}(x)}\) behaves like \({|x|^{\delta_{i}}}\) as x → 0 and \({|x|^{\delta'_{i}}}\) as \(x \to \infty\) with \(\delta_1, \delta'_1 \in [0, 1 \rangle\) and \(\delta_2,\delta'_2 \geq 0\) . Our principal results state that the submarkovian semigroup \(S_t = e^{-tH}\) is conservative and its kernel K t satisfies bounds

$$0\leq K_t(x;\,y)\leq a\,(|B(x;\,t^{1/2})|\,|B(y;\,t^{1/2})|)^{-1/2}$$

where |B(xr)| denotes the volume of the ball B(xr) centred at x with radius r measured with respect to the Riemannian distance associated with H. The proofs depend on detailed subelliptic estimations on H, a precise characterization of the Riemannian distance and the corresponding volumes and wave equation techniques which exploit the finite speed of propagation. We discuss further implications of these bounds and give explicit examples that show the kernel is not necessarily strictly positive, nor continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equat. 6(2), 161–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ariyoshi, T., Hino, M.: Small-time asymptotic estimates in local Dirichlet spaces. Elec. J. Prob. 10, 1236–1259 (2005)

    MathSciNet  Google Scholar 

  3. Bouleau, N., Hirsch, F.: Dirichlet forms and analysis on Wiener space, vol. 14 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1991)

    Google Scholar 

  4. Braides, A.: Γ-convergence for beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002)

    Google Scholar 

  5. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2, 2nd edn. Springer, New York (1997)

    Google Scholar 

  6. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Composit. Math. 53, 259–275 (1984)

    MATH  MathSciNet  Google Scholar 

  7. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré 23, 245–287 (1987)

    MathSciNet  Google Scholar 

  8. Coulhon, T.: Off-diagonal heat kernel lower bounds without Poincaré. J. Lond. Math. Soc. 68, 795–816 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coulhon, T., Saloff-Coste, L.: Variétés riemanniennes isométriques à l’infini. Rev. Mat. Iberoamericana 11, 687–726 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded H functional calculus. J. Aust. Math. Soc. (Series A) 60, 51–89 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Dal Maso, G.: An introduction to Γ-convergence, vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston (1993)

    Google Scholar 

  12. Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58, 99–119 (1992), Festschrift on the occasion of the 70th birthday of Shmuel Agmon

    Article  MATH  MathSciNet  Google Scholar 

  13. Davies, E.B.: A review of Hardy inequalities. In The Maz’ya anniversary collection, Vol. 2 (Rostock, 1998), vol. 110 of Oper. Theory Adv. Appl., 55–67. Birkhäuser, Basel (1999)

  14. Duong, X.T., Ouhabaz, E.-M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196, 443–485 (2002)

    Article  MathSciNet  Google Scholar 

  15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishing Co., Amsterdam (1976)

    MATH  Google Scholar 

  16. ter Elst, A.F.M., Robinson, D.W., Sikora, A.: Small time asymptotics of diffusion processes. J. Evol. Equat. 7, 79–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. ter Elst, A.F.M., Robinson, D.W., Sikora, A., Zhu, Y.: Second-order operators with degenerate coefficients. Proc. London Math. Soc. 95, 299–328 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Part. Differ. Equat. 7, 77–116 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Franchi, B.: Weighted Sobolev–Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. Trans. Am. Math. Soc. 327, 125–158 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Franchi, B., Gutiérrez, C.E., Wheeden, R.L.: Weighted Sobolev–Poincaré inequalities for Grushin type operators. Commun. Part. Differ. Equat. 19, 523–604 (1994)

    Article  MATH  Google Scholar 

  21. Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10, 523–541 (1983)

    MATH  MathSciNet  Google Scholar 

  22. Franchi, B., Lanconelli, E.: An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality. Commun. Part. Differ. Equat. 9, 1237–1264 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Franchi, B., Serapioni, R.: Pontwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14, 527–568 (1987)

    MATH  MathSciNet  Google Scholar 

  24. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, vol. 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1994)

    Google Scholar 

  25. Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Commun. Pure Appl. Math. 12, 1–11 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Second edition, Grundlehren der mathematischen Wissenschaften 224. Springer, Berlin (1983)

  27. Grigor’yan, A.: Estimates of heat kernels on Riemannian manifolds. In: Spectral theory and geometry (Edinburgh, 1998), vol. 273 of London Math. Soc. Lecture Note Ser., pp. 140–225. Cambridge University Press, Cambridge (1999)

  28. Grušin, V.V.: A certain class of hypoelliptic operators. Mat. Sb. (N.S.) 83(125) (1970)

  29. Hajlasz, P.: Geometric approach to Sobolev Spaces and Badly Degenerated Elliptic Equations. In: Nonlinear Analysis and Applications (Warsaw, 1994), vol. 7 of Gakuto Internat. Ser. Math. Sci. Appl., 141–168. Gakkōtosho, Tokyo (1996)

  30. Hino, M., Ramírez, J.A.: Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Prob. 31, 254–1295 (2003)

    Google Scholar 

  31. Jerison, D., Sánchez-Calle, A.: Subelliptic, second order differential operators. In: Berenstein, C.A.(eds) Complex analysis III, Lecture Notes in Mathematics, vol. 1277, pp. 46–77. Springer, Berlin (1987)

    Google Scholar 

  32. Jost, J.: Nonlinear Dirichlet forms. In: New directions in Dirichlet forms, vol. 8 of AMS/IP Stud. Adv. Math., pp. 1–47. Amer. Math. Soc., Providence (1998)

  33. Ma, Z.M., Röckner, M.: Introduction to the Theory of (non symmetric) Dirichlet Forms. Universitext. Springer, Berlin (1992)

    Google Scholar 

  34. Martinez, P., Vancostenoble, J.: Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equat. 6, 325–362 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123, 368–421 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  37. Robinson, D.W.: Elliptic Operators and Lie Groups. Oxford Mathematical Monographs. Oxford University Press, Oxford (1991)

    Google Scholar 

  38. Robinson, D.W., Sikora, A.: Degenerate elliptic operators: capacity, flux and separation, J. Ramanjuan Math. Soc. (2007) (to appear)

  39. Saloff-Coste, L.: Aspects of Sobolev-type inequalities. London Math. Soc. Lect. Note Series, vol. 289. Cambridge University Press, Cambridge (2002)

  40. Sawyer, E.T., Wheeden, R.L.: Hölder continuity of weak solutions to subelliptic equations with rough coefficients. Mem. Am. Math. Soc. 180(847), x+157 (2006)

    MathSciNet  Google Scholar 

  41. Sikora, A.: Sharp pointwise estimates on heat kernels. Quart. J. Math. Oxford 47, 371–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247, 643–662 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Strichartz, R.S.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16, 1031–1060 (1967)

    MATH  MathSciNet  Google Scholar 

  44. Trudinger, N.S.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa 27, 265–308 (1973)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek W. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D.W., Sikora, A. Analysis of degenerate elliptic operators of Grušin type. Math. Z. 260, 475–508 (2008). https://doi.org/10.1007/s00209-007-0284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0284-3

Mathematics Subject Classification (2000)

Navigation