Skip to main content
Log in

Lyapunov functions and convergence to steady state for differential equations of fractional order

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the asymptotic behaviour, as t → ∞, of bounded solutions to certain integro-differential equations in finite dimensions which include differential equations of fractional order between 0 and 2. We derive appropriate Lyapunov functions for these equations and prove that any global bounded solution converges to a steady state of a related equation, if the nonlinear potential \(\mathcal E\) occurring in the equation satisfies the Łojasiewicz inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizicovici S. and Feireisl E. (2001). Long-time stabilization of solutions to a phase-field model with memory. J. Evol. Equ. 1: 69–84

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizicovici S. and Petzeltová H. (2003). Asymptotic behavior of solutions of a conserved phase-field system with memory. J. Integral Equ. Appl. 15: 217–240

    Article  MATH  Google Scholar 

  3. Chill R. (2003). On the Łojasiewicz-Simon gradient inequality. J. Funct. Anal. 201: 572–601

    Article  MATH  MathSciNet  Google Scholar 

  4. Chill R. and Fašangová E. (2005). Convergence to steady states of solutions of semilinear evolutionary integral equations. Calc. Var. Partial Differ. Equ. 22: 321–342

    Article  MATH  Google Scholar 

  5. Chill, R., Fašangová, E., Prüss, J.: Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions. Math. Nachr. (to appear) (2006)

  6. Clément, Ph.: On abstract Volterra equations in Banach spaces with completely positive kernels. Infinite-dimensional systems (Retzhof, 1983), pp. 32-40, Lecture Notes in Mathematics, vol. 1076. Springer, Berlin (1984)

  7. Clément Ph. and Nohel J.A. (1981). Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12: 514–535

    Article  MATH  MathSciNet  Google Scholar 

  8. Clément Ph. and Prüss J. (1990). Completely positive measures and Feller semigroups. Math. Ann. 287: 73–105

    Article  MATH  MathSciNet  Google Scholar 

  9. Dafermos C.M. (1970). Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37: 297–308

    Article  MATH  MathSciNet  Google Scholar 

  10. Grasselli M., Petzeltová H. and Schimperna G. (2006). Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25: 51–72

    Article  MATH  MathSciNet  Google Scholar 

  11. Gripenberg G. (1985). Volterra integro-differential equations with accretive nonlinearity. J. Differ. Equ. 60: 57–79

    Article  MATH  MathSciNet  Google Scholar 

  12. Gripenberg G., Londen S.-O. and Staffans O. (1990). Volterra integral and functional equations. Encyclopedia of Mathematics and its Applications, vol. 34. Cambridge University Press, Cambridge

    Google Scholar 

  13. Haraux A. and Jendoubi M.A. (1999). Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity. Calc. Var. Partial Differ. Equ. 9: 95–124

    Article  MATH  MathSciNet  Google Scholar 

  14. Haraux A. and Jendoubi M.A. (1998). Convergence of solutions of second-order gradient-like systems with analytic nonlinearities. J. Differ. Equ. 144: 313–320

    Article  MATH  MathSciNet  Google Scholar 

  15. Huang S.-Z. (2006). Gradient inequalities. With applications to asymptotic behavior and stability of gradient-like systems. Mathematical Surveys and Monographs, vol. 126. American Mathematical Society, Providence, RI

    Google Scholar 

  16. Jendoubi M.A. (1998). Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity. J. Differ. Equ. 144: 302–312

    Article  MATH  MathSciNet  Google Scholar 

  17. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Colloques internationaux du C.N.R.S.: Les Équations aux Dérivées Partielles, Paris, Éditions du C.N.R.S., Paris, 1963, pp. 87–89 (1962)

  18. Łojasiewicz, S.: Sur les trajectoires du gradient d’une fonction analytique. Geometry seminars, Bologna (1982/1983), Univ. Stud. Bologna, Bologna, pp. 115–117 (1984)

  19. Prüss J. (1993). Evolutionary Integral Equations and Applications. Monographs in Mathematics, vol. 87. Birkhäuser, Basel

    Google Scholar 

  20. Prüss, J.; Wilke, M.: Maximal L p -regularity and long-time behaviour of the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions. Partial differential equations and functional analysis, 209–236, Oper. Theory Adv. Appl., vol. 168. Birkhäuser, Basel (2006)

  21. Runst T. and Sickel W. (1996). Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin

    Google Scholar 

  22. Simon L. (1983). Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. 118(2): 525–571

    Article  Google Scholar 

  23. Vergara, V.: Convergence to steady state for a phase field system with memory. Thesis, Martin-Luther-Universität Halle, 2006. Published in Berichte aus der Mathematik, Shaker Verlag, Aachen (2006)

  24. Zacher R. (2005). Maximal regularity of type L p for abstract parabolic Volterra equations. J. Evol. Equ. 5: 79–103

    Article  MATH  MathSciNet  Google Scholar 

  25. Zacher, R.: Quasilinear parabolic problems with nonlinear boundary conditions. Thesis, Martin-Luther-Universität Halle (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Zacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergara, V., Zacher, R. Lyapunov functions and convergence to steady state for differential equations of fractional order. Math. Z. 259, 287–309 (2008). https://doi.org/10.1007/s00209-007-0225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0225-1

Keywords

Mathematics Subject Classification (2000)

Navigation