Skip to main content
Log in

On a family of non-unitarizable ribbon categories

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract.

We consider several families of categories. The first are quotients of H. Andersen’s tilting module categories for quantum groups of Lie type B at odd roots of unity. The second consists of categories of type BC constructed from idempotents in BMW-algebras. Our main result is to show that these families coincide as braided tensor categories using a recent theorem of Tuba and Wenzl. By appealing to similar results of Blanchet and Beliakova we obtain another interesting equivalence with these two families of categories and the quantum group categories of Lie type C at odd roots of unity. The morphism spaces in these categories can be equipped with a Hermitian form, and we are able to show that these categories are never unitary, and no braided tensor category sharing the Grothendieck semiring common to these families is unitarizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, H. H.: Tensor products of quantized tilting modules. Comm. Math. Phys. 149, 149–159 (1991)

    Google Scholar 

  2. Andersen, H. H., Paradowski, J.: Fusion categories arising from semisimple Lie algebras. Comm. Math. Phys. 169, 563–588 (1995)

    Google Scholar 

  3. Bakalov, B., Kirillov Jr. A.: Lectures on tensor categories and modular functors. AMS Providence, 2001

  4. Beliakova, A., Blanchet, C.: Modular categories of type B, C and D. Comment. Math. Helv. 76, 467–500 (2001)

    Google Scholar 

  5. Birman, J., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. AMS 313, 249–273 (1989)

    Google Scholar 

  6. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge, 1994

  7. Drinfeld, V. G.: Almost cocommutative Hopf algebras. Leningrad Math. J. 1(2), 321–342 (1990) (translation)

    Google Scholar 

  8. Gantmacher, F. R.: The Theory of Matrices. v. 2, Chelsea, New York, 1959

  9. Goodman, R., Wallach, N.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge, 1998

  10. Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory. Springer-Verlag, New York.

  11. Jantzen, J. C.: Lectures on Quantum Groups, AMS 1996

  12. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, 155. Springer-Verlag, New York, 1995

  13. Kauffmann, L. H.: An invariant of regular isotopy. Trans. Amer. Math. Soc. 318(2), 417–471 (1990)

    Google Scholar 

  14. Kirillov Jr. A.: On an inner product in modular categories. J. of AMS 9, 1135–1170 (1996)

    Google Scholar 

  15. Le, T., Turaev, V.: Quantum groups and ribbon G-categories. J. Pure Appl. Algebra, 178, 169–185 (2003)

    Google Scholar 

  16. Lusztig, G.: Introduction to Quantum Groups. Birkhäuser, 1993

  17. Murakami, J.: The Kaufmann polynomial of links and representation theory. Osaka J. Math. 24, 745–758 (1987)

    Google Scholar 

  18. Orellana, R. C., Wenzl, H.: q-centralizer algebras for spin groups. J. Algebra, 253(2), 237–275 (2002)

    Google Scholar 

  19. Leduc, R., Ram, A.: A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: The Brauer, Birman-Wenzl and type A Iwahori-Hecke algebras. Adv. Math. 125, 1–94 (1997)

    Google Scholar 

  20. Rowell, E.: Tensor categories arising from quantum groups and BMW-algebras at odd roots of unity. Thesis, U.C. San Diego, 2003

  21. Sawin, S.: Jones-Witten invariants for nonsimply connected Lie groups and the geometry of the Weyl alcove. Adv. Math. 165(1), 1–34 (2002)

    Google Scholar 

  22. Sawin, S.: Quantum groups at roots of unity and modularity. Preprint, arXiv: math.QA/0308281

  23. Turaev, V. G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics. 18. Walter de Gruyter & Co., Berlin, 1994

  24. Turaev, V. G., Wenzl, H.: Quantum invariants of 3-manifolds associated with classical simple Lie algebras. Int. J Math. 4, 323–358 (1993)

    Google Scholar 

  25. Turaev, V.G., Wenzl, H. Semisimple and modular tensor categories from link invariants, Math. Ann. 309 (1997) 411–461.

    Google Scholar 

  26. Tuba, I., Wenzl, H.: Representations of the braid groups B3 and of SL(2,ℤ). Pacific J. Math. 197(2), 491–510 (2001)

    Google Scholar 

  27. Tuba, I., Wenzl, H.: On braided tensor categories of type BCD. to appear, J. Reine Agnew. Math.

  28. Wenzl, H.: Quantum groups and subfactors of Lie type B, C and D. Comm. Math. Phys. 133, 383–433 (1990)

    Google Scholar 

  29. Wenzl, H.: C* tensor categories from quantum groups. J of AMS, 11, 261–282 (1998)

    Google Scholar 

  30. Wenzl, H.: Hecke algebras of type A n and subfactors. Invent. Math. 92, 349–383 (1988)

    Google Scholar 

  31. Weyl, H.: The Classical Groups; Their Invariants and Representations. Princeton University Press, Princeton, 1939

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Rowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowell, E. On a family of non-unitarizable ribbon categories. Math. Z. 250, 745–774 (2005). https://doi.org/10.1007/s00209-005-0773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-005-0773-1

Keywords

Navigation