Skip to main content
Log in

On the Rankin–Selberg problem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we solve the Rankin–Selberg problem. That is, we break the well known Rankin–Selberg’s bound on the error term of the second moment of Fourier coefficients of a \({\text {GL}}(2)\) cusp form (both holomorphic and Maass), which remains its record since its birth for more than 80 years. We extend our method to deal with averages of coefficients of L-functions which can be factorized as a product of a degree one and a degree three L-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a typo in [14, eq. (20.158)].

References

  1. Aggarwal, K.: A new subconvex bound for \({\rm GL}(3)\) L-functions in the \(t\)-aspect. Int. J. Number Theory (2020). https://doi.org/10.1142/S1793042121500275

  2. Blomer, V.: Subconvexity for twisted L-functions on \({\rm GL}(3)\). Am. J. Math. 134(5), 1385–1421 (2012)

    Article  MathSciNet  Google Scholar 

  3. Blomer, V., Khan, R., Young, M.: Distribution of mass of holomorphic cusp forms. Duke Math. J. 162(14), 2609–2644 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: Decoupling exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30(1), 205–224 (2017)

    Article  MathSciNet  Google Scholar 

  5. Friedlander, J., Iwaniec, H.: Summation formulae for coefficients of L-functions. Can. J. Math. 57(3), 494–505 (2005)

    Article  MathSciNet  Google Scholar 

  6. Gelbart, S., Jacquet, H.: A relation between automorphic representations of \({\rm GL}(2)\) and \({\rm GL}(3)\). Ann. Sci. École Norm. Sup. (4) 11(4), 471–542 (1978)

    Article  MathSciNet  Google Scholar 

  7. Goldfeld, D.: Automorphic forms and L-functions for the group \({\rm GL}(n,{\mathbb{R}})\). With an appendix by Kevin A. Broughan. Cambridge Studies in Advanced Mathematics, vol. 99, pp. xiv+493. Cambridge University Press, Cambridge (2006)

  8. Goldfeld, D., Li, X.: Voronoi formulas on \({\rm GL}(n)\). Int. Math. Res. Not., 25 (2006) (Art. ID 86295)

  9. Graham, S.W., Kolesnik, G.: Van der Corput’s Method of Exponential Sums. London Mathematical Society Lecture Note Series, vol. 126. Cambridge University Press, Cambridge (1991)

  10. Huang, B.: Quantum variance for Eisenstein series. Int. Math. Res. Not. 2021(2), 1224–1248 (2019)

  11. Huxley, M.N.: Area, Lattice Points, and Exponential Sums. London Mathematical Society Monographs. New Series, vol. 13, The Clarendon Press, Oxford University Press, New York (1996)

  12. Ivić, A.: Large values of certain number-theoretic error terms. Acta Arith. 56, 135–159 (1990)

    Article  MathSciNet  Google Scholar 

  13. Ivić, A.: On the fourth moment in the Rankin–Selberg problem. Arch. Math. (Basel) 90(5), 412–419 (2008)

    Article  MathSciNet  Google Scholar 

  14. Iwaniec, H., Kowalski, E.: Analytic number theory, vol. 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2004)

  15. Jacquet, H., Shalika, J.: Rankin–Selberg convolutions: Archimedean theory. Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc., vol. 2, pp. 125–207. Weizmann, Jerusalem (1990)

  16. Jutila, M.: Lectures on a method in the theory of exponential sums. In: Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 80. Published for the Tata Institute of Fundamental Research, Bombay; Springer, Berlin (1987)

  17. Kiral, E., Petrow, I., Young, M.: Oscillatory integrals with uniformity in parameters. J. Théor. Nombres Bordx. 31(1), 145–159 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kumar, S., Mallesham, K., Singh, S.K.: Non-linear additive twist of Fourier coefficients of \({\rm GL}(3)\) Maass forms (2019). arXiv:1905.13109

  19. Lau, Y.K., Lü, G.S., Wu, J.: Integral power sums of Hecke eigenvalues. Acta Arith. 150(2), 687–716 (2011)

    Article  MathSciNet  Google Scholar 

  20. Li, X.: The central value of the Rankin–Selberg L-functions. Geom. Funct. Anal. 18(5), 1660–1695 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lin, Y., Sun, Q.: Analytic twists of \({\rm GL}_3 \times {\rm GL}_2\) automorphic forms. Int. Math. Res. Not. (2021). https://doi.org/10.1093/imrn/rnaa348

  22. Miller, S., Schmid, W.: Automorphic distributions, \(L\)-functions, and Voronoi summation for \({\rm GL}(3)\). Ann. Math. (2) 164(2), 423–488 (2006)

    Article  MathSciNet  Google Scholar 

  23. Munshi, R.: The circle method and bounds for L-functions-III: \(t\)-aspect subconvexity for \({\rm GL}(3)\) L-functions. J. Am. Math. Soc. 28(4), 913–938 (2015)

    Article  MathSciNet  Google Scholar 

  24. Munshi, R.: Subconvexity for \({\rm GL}(3)\times {\rm GL}(2) \)\( L \)-functions in \( t \)-aspect (2018). arXiv:1810.00539

  25. Rankin, R.A.: Contributions to the theory of Ramanujan’s function \(\tau (n)\) and similar arithmetical functions. I. The zeros of the function \(\sum _{n=1}^\infty \tau (n)/n^s\) on the line \({\rm Re} s=13/2\). II. The order of the Fourier coefficients of integral modular forms. Proc. Camb. Philos. Soc. 35, 351–372 (1939)

    Article  Google Scholar 

  26. Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. (German). Arch. Math. Nat. 43, 47–50 (1940)

    MATH  Google Scholar 

  27. Titchmarsh, E.C.: The theory of the Riemann zeta-function. In: Edited and with a preface by D. R. Heath-Brown, 2nd edn., pp. x+412. The Clarendon Press, Oxford University Press, New York (1986)

  28. Valentin, B., Farrell, B.: The role of the Ramanujan conjecture in analytic number theory. Bull. Am. Math. Soc. (N.S.) 50(2), 267–320 (2013)

Download references

Acknowledgements

The author wants to thank Prof. Jianya Liu and Zeév Rudnick for their help and encouragements. He would like to thank Yongxiao Lin and Qingfeng Sun for many discussions on [5, 21]. The author started to try seriously to solve the Rankin–Selberg problem when he was a postdoc at Tel Aviv University. He likes to thank Tel Aviv Unviersity for providing a nice work environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingrong Huang.

Additional information

Communicated by Kannan Soundararajan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Young Taishan Scholars Program of Shandong Province (Grant No. tsqn201909046), Qilu Young Scholar Program of Shandong University, and NSFC (Nos. 12001314 and 12031008)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B. On the Rankin–Selberg problem. Math. Ann. 381, 1217–1251 (2021). https://doi.org/10.1007/s00208-021-02186-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02186-7

Mathematics Subject Classification

Navigation