Skip to main content
Log in

Representation stability for filtrations of Torelli groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show, finitely generated rational \(\mathsf {VIC}_\mathbb Q\)-modules and \(\mathsf {SI}_\mathbb Q\)-modules are uniformly representation stable and all their submodules are finitely generated. We use this to prove two conjectures of Church and Farb, which state that the quotients of the lower central series of the Torelli subgroups of \({{\mathrm{Aut}}}(F_n)\) and \({{\mathrm{Mod\,}}}(\Sigma _{g,1})\) are uniformly representation stable as sequences of representations of the general linear groups and the symplectic groups, respectively. Furthermore we prove an analogous statement for their Johnson filtrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This issue can also be resolved by working with the Zariski closures \({{\mathrm{SL}}}_n^\pm \mathbb Q\) of \({{\mathrm{GL}}}_n \mathbb Z\) instead of \({{\mathrm{GL}}}_n\mathbb Q\) and an analogous category \(\mathsf {VIC}_\mathbb Q^\pm \) defined by Putman–Sam [29]. But this would make working with branching rules considerably harder.

References

  1. Andreadakis, S.: On the automorphisms of free groups and free nilpotent groups. Proc. Lond. Math. Soc. 3(15), 239–268 (1965)

    Article  MathSciNet  Google Scholar 

  2. Bachmuth, S.: Induced automorphisms of free groups and free metabelian groups. Trans. Am. Math. Soc. 122, 1–17 (1966)

    Article  MathSciNet  Google Scholar 

  3. Boldsen, S.K., Dollerup, M.H.: Towards representation stability for the second homology of the Torelli group. Geom. Topol. 16(3), 1725–1765 (2012)

    Article  MathSciNet  Google Scholar 

  4. Borel, A.: Density properties for certain subgroups of semi-simple groups without compact components. Ann. Math. 2(72), 179–188 (1960)

    Article  MathSciNet  Google Scholar 

  5. Bourbaki, N.: Lie groups and Lie algebras. Chapters 1–3. In: Elements of Mathematics (Berlin). Springer, Berlin (1998). Translated from the French, Reprint of the 1989 English translation

  6. Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910 (2015)

    Article  MathSciNet  Google Scholar 

  7. Church, T., Farb, B.: Representation theory and homological stability. Adv. Math. 245, 250–314 (2013)

    Article  MathSciNet  Google Scholar 

  8. Church, T., Putman, A.: Generating the Johnson filtration. Geom. Topol. 19(4), 2217–2255 (2015)

    Article  MathSciNet  Google Scholar 

  9. Day, M., Putman, A.: On the second homology group of the Torelli subgroup of \({\rm {Aut}}(F_n)\). Geom. Topol. 21(5), 2851–2896 (2017)

    Article  MathSciNet  Google Scholar 

  10. Djament, A.: Des propriétés de finitude des foncteurs polynomiaux. Fundam. Math. 233(3), 197–256 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Formanek, E.: Characterizing a free group in its automorphism group. J. Algebra 133(2), 424–432 (1990)

    Article  MathSciNet  Google Scholar 

  12. Fulton, W., Harris, J.: Representation theory. In: Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). A first course, Readings in Mathematics

  13. Fulton, W.: Young tableaux. In: London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge, With applications to representation theory and geometry (1997)

  14. Gan, W.L., Watterlond, J.: Stable decompositions of certain representations of the finite general linear groups. Transform. Groups 23(2), 425–435 (2018)

    Article  MathSciNet  Google Scholar 

  15. Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants. In: Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)

  16. Green, J.A.: Polynomial representations of \({\rm GL}\_{n}\). In: Lecture Notes in Mathematics, vol. 830. Springer, Berlin, augmented edition (2007). With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker

  17. Hain, R.: Infinitesimal presentations of the Torelli groups. J. Am. Math. Soc. 10(3), 597–651 (1997)

    Article  MathSciNet  Google Scholar 

  18. Hönig, C.S.: Proof of the well-ordering of cardinal numbers. Proc. Am. Math. Soc. 5, 312 (1954)

    Article  MathSciNet  Google Scholar 

  19. Habegger, N., Sorger, C.: An infinitesimal presentation of the Torelli group of a surface with boundary. Preprint, 2000. http://www.math.sciences.univ-nantes.fr/~habegger/PS/inf180300.ps

  20. Howe, R., Tan, E.-C., Willenbring, J.F.: Stable branching rules for classical symmetric pairs. Trans. Am. Math. Soc. 357(4), 1601–1626 (2005)

    Article  MathSciNet  Google Scholar 

  21. Jantzen, J.C.: Representations of algebraic groups. In: Pure and Applied Mathematics, vol. 131. Academic Press Inc, Boston (1987)

  22. Johnson, D.: An abelian quotient of the mapping class group \({\cal{I}}_{g}\). Math. Ann. 249(3), 225–242 (1980)

    Article  MathSciNet  Google Scholar 

  23. Johnson, D.: The structure of the Torelli group. III. The abelianization of \(\mathscr {I}\). Topology 24(2), 127–144 (1985)

    Article  MathSciNet  Google Scholar 

  24. Koike, K.: On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters. Adv. Math. 74(1), 57–86 (1989)

    Article  MathSciNet  Google Scholar 

  25. Koike, K., Terada, I.: Young-diagrammatic methods for the representation theory of the classical groups of type \(B_n,\, C_n,\, D_n\). J. Algebra 107(2), 466–511 (1987)

    Article  MathSciNet  Google Scholar 

  26. Lazard, M.: Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. Ecole Norm. Sup. 3(71), 101–190 (1954)

    Article  MathSciNet  Google Scholar 

  27. Magnus, W.: über Gruppen und zugeordnete Liesche Ringe. J. Reine Angew. Math. 182, 142–149 (1940)

    MathSciNet  MATH  Google Scholar 

  28. Miller, J., Patzt, P., Wilson, J.C.H.: Central stability for the homology of congruence subgroups and the second homology of Torelli groups. Preprint, 04 (2017). arXiv:1704.04449

  29. Putman, A., Sam, S.V.: Representation stability and finite linear groups. Duke Math. J. 166(13), 2521–2598 (2017)

    Article  MathSciNet  Google Scholar 

  30. Randal-Williams, O., Wahl, N.: Homological stability for automorphism groups. Adv. Math. 318, 534–626 (2017)

    Article  MathSciNet  Google Scholar 

  31. Sam, S.V., Snowden, A., Weyman, J.: Homology of Littlewood complexes. Selecta Math. (N.S.) 19(3), 655–698 (2013)

    Article  MathSciNet  Google Scholar 

  32. Satoh, T.: On the lower central series of the IA-automorphism group of a free group. J. Pure Appl. Algebra 216(3), 709–717 (2012)

    Article  MathSciNet  Google Scholar 

  33. Satoh, T.: A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics. In: Handbook of Teichmüller theory. vol. V, pp. 167–209. European Mathematical Society (EMS), Zürich (2016)

  34. Serre, J.-P.: Lie algebras and Lie groups. In: Lecture Notes in Mathematics. Springer, Berlin (2006). 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition

  35. Snowden, A.: Syzygies of Segre embeddings and \(\Delta \)-modules. Duke Math. J. 162(2), 225–277 (2013)

    Article  MathSciNet  Google Scholar 

  36. Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton (1939)

    MATH  Google Scholar 

  37. Witt, E.: Treue Darstellung Liescher Ringe. J. Reine Angew. Math. 177, 152–160 (1937)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

First and foremost the author wishes to thank his advisor Holger Reich for introducing him to the interesting and emerging field of representation stability. During his PhD the author was supported by the Berlin Mathematical School, the SFB Raum–Zeit–Materie and the Dahlem Research School. The author also wants to thank Kevin Casto, Tom Church, Daniela Egas Santander, Benson Farb, Daniel Lütgehetmann, Jeremy Miller, Holger Reich, Steven Sam, David Speyer and Elmar Vogt for helpful conversations. Special thanks to Steven Sam for his extensive help with the modification rules, and to Kevin Casto for pointing out the conjectures to the author. The author would also like to thank the anonymous referee that suggested several improvements to the current version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Patzt.

Additional information

Communicated by Andreas Thom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patzt, P. Representation stability for filtrations of Torelli groups. Math. Ann. 372, 257–298 (2018). https://doi.org/10.1007/s00208-018-1708-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1708-6

Mathematics Subject Classification

Navigation