Skip to main content
Log in

\(E_n\)-cell attachments and a local-to-global principle for homological stability

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define bounded generation for \(E_n\)-algebras in chain complexes and prove that this property is equivalent to homological stability for \(n \ge 2\). Using this we prove a local-to-global principle for homological stability, which says that if an \(E_n\)-algebra A has homological stability (or equivalently the topological chiral homology \(\int _{\mathbb {R}^n} A\) has homology stability), then so has the topological chiral homology \(\int _M A\) of any connected non-compact manifold M. Using scanning, we reformulate the local-to-global homological stability principle so that it applies to compact manifolds. We also give several applications of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See also the appendix of the arXiv-version of this paper.

References

  1. Arnol’d, V.I.: Certain topological invariants of algebraic functions. Trudy Moskov. Mat. Obšč. 21, 27–46 (1970)

    Google Scholar 

  2. Segal, G.: The topology of spaces of rational functions. Acta Math. 143(1–2), 39–72 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Steenrod, N.E.: Cohomology operations, and obstructions to extending continuous functions. Adv. Math. 8, 371–416 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yamaguchi, K.: Configuration space models for spaces of maps from a Riemann surface to complex projective space. Publ. Res. Inst. Math. Sci. 39(3), 535–543 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kupers, A., Miller, J., Tran, T.: Homological stability for symmetric complements. Trans. Am. Math. Soc. 368(11), 7745–7762 (2016)

  6. Randal-Williams, O.: Homological stability for unordered configuration spaces. Q. J. Math. 64(1), 303–326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kupers, A., Miller, J.: Homological stability for topological chiral homology of completions. Adv. Math. 292, 755–827 (2016)

  8. Ellenberg, J.S., Venkatesh, A., Westerland, C.: Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields. Ann. Math. (2) 183(3), 729–786 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harer, J.L.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. Math. (2) 121(2), 215–249 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wahl, N.: Homological stability for mapping class groups of surfaces. In: Handbook of Moduli. Vol. III, Volume 26 of Adv. Lect. Math. (ALM), pp. 547–583. Int. Press, Somerville, (2013)

  11. Galatius, S., Randal-Williams, O.: Homological stability for moduli spaces of high dimensional manifolds, I. Preprint (2014). arXiv:1403.2334

  12. Palmer, M.: Configuration spaces and homological stability. Oxford University Thesis (2012)

  13. Boyer, C.P., Hurtubise, J.C., Mann, B.M., Milgram, R.J.: The topology of instanton moduli spaces. I. The Atiyah–Jones conjecture. Ann. Math. (2) 137(3), 561–609 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gravesen, J.: On the topology of spaces of holomorphic maps. Acta Math. 162(3–4), 247–286 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyer, C.P., Hurtubise, J.C., Mann, B.M., Milgram, R.J.: The topology of the space of rational maps into generalized flag manifolds. Acta Math. 173(1), 61–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guest, M.A.: The topology of the space of rational curves on a toric variety. Acta Math. 174(1), 119–145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Andrade, R.: From manifolds to invariants of En-algebras. ProQuest LLC, Ann Arbor, Thesis (Ph.D.)—Massachusetts Institute of Technology (2010)

  18. Ayala, D., Francis, J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ginot, G., Tradler, T., Zeinalian, M.: Higher Hochschild homology, topological chiral homology and factorization algebras. Commun. Math. Phys. 326(3), 635–686 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lurie, J.: Higher Algebra (2011). Nov 2014 version. http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf

  21. Salvatore, P.: Configuration spaces with summable labels. In: Cohomological Methods in Homotopy Theory (Bellaterra, 1998), Volume 196 of Progr. Math., pp. 375–395. Birkhäuser, Basel (2001)

  22. Kupers, A., Miller, J.: Improved homological stability for configuration spaces after inverting 2. Homol. Homot. Appl. 17(1), 255–266 (2015)

  23. Miller, J.: Nonabelian Poincaré duality after stabilizing. Trans. Am. Math. Soc. 367(3), 1969–1991 (2015)

    Article  MATH  Google Scholar 

  24. Church, T.: Homological stability for configuration spaces of manifolds. Invent. Math. 188(2), 465–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. May, J.P.: The Geometry of Iterated Loop Spaces. Springer, Berlin (1972). (Lecture Notes in Mathematics, Vol. 271)

    Book  MATH  Google Scholar 

  26. Fresse, B.: Modules Over Operads and Functors, Lecture Notes in Mathematics, vol. 1967. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  27. Munkres, J.R.: Topology, 2nd edn. Prentice-Hall Inc., Englewood Cliffs (2000)

    MATH  Google Scholar 

  28. Lurie, J.: Higher Topos Theory, Volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton (2009)

    Google Scholar 

  29. Segal, G.: Categories and cohomology theories. Topology 13, 293–312 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Segal, G.: Classifying spaces and spectral sequences. Inst. HT. Études Sci. Publ. Math. 34, 105–112 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. McCleary, J.: A User’s Guide to Spectral Sequences, Volume 58 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  32. McDuff, D.: Configuration spaces of positive and negative particles. Topology 14, 91–107 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras. In: Categories in Algebra, Geometry and Mathematical Physics, Volume 431 of Contemp. Math., pp. 31–58. Amer. Math. Soc., Providence (2007)

  34. Horel, G.: Factorization homology and calculus à la Kontsevich Soibelman. J. Noncommut. Geom. (to appear). Preprint (2013). arXiv:1307.0322v3

  35. Cantero, F., Palmer, M.: On homological stability for configuration spaces on closed background manifolds. Preprint (2014)

  36. Ayala, D., Francis, J.: Poincaré/Koszul duality. Preprint (2014). arXiv:1409.2478v2

  37. McDuff, D., Segal, G.: Homology fibrations and the “group-completion” theorem. Invent. Math. 31(3), 279–284 (1975/1976)

  38. Weiss, M.: What does the classifying space of a category classify? Homol. Homot. Appl. 7(1), 185–195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Miller, J.: The topology of the space of J-holomorphic maps to \({CP}^2\). Geometry & Topology, Preprint (to appear) (2012)

  40. Vakil, R., Wood, M.M.: Discriminants in the Grothendieck ring. Duke Math. J. 164(6), 1139–1185 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cohen, F.R., Cohen, R.L., Mann, B.M., Milgram, R.J.: The topology of rational functions and divisors of surfaces. Acta Math. 166(3–4), 163–221 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vassiliev, V.A.: Complements of discriminants of smooth maps: topology and applications, volume 98 of Translations of Mathematical Monographs. American Mathematical Society, Providence (1992). Translated from the Russian by B. Goldfarb

  43. Kallel, S., Salvatore, P.: Rational maps and string topology. Geom. Topol. 10, 1579–1606 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  44. Fiedorowicz, Z., Song, Y.: The braid structure of mapping class groups. Sci. Bull. Josai Univ. (Special issue 2), 21–29 (1997). Surgery and geometric topology (Sakado, 1996)

  45. Lurie, J.: Rotation invariance in algebraic K-theory. Preprint (2014). http://www.math.harvard.edu/~lurie/papers/Waldhausen.pdf

  46. Guest, M.A., Kozlowski, A., Yamaguchi, K.: Stable splitting of the space of polynomials with roots of bounded multiplicity. J. Math. Kyoto Univ. 38(2), 351–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Francis, J.: The tangent complex and Hochschild cohomology of \({E}_n\)-rings. Compos. Math. 149(3), 430–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Guest, M.A., Kozlowski, A., Yamaguchi, K.: The topology of spaces of coprime polynomials. Math. Z. 217(3), 435–446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ricardo Andrade, Kerstin Baer, Ralph Cohen, Søren Galatius, Martin Palmer and the anonymous referee for helpful conversations and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Miller.

Additional information

Alexander Kupers is supported by a William R. Hewlett Stanford Graduate Fellowship, Department of Mathematics, Stanford University, and was partially supported by NSF Grant DMS-1105058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupers, A., Miller, J. \(E_n\)-cell attachments and a local-to-global principle for homological stability. Math. Ann. 370, 209–269 (2018). https://doi.org/10.1007/s00208-017-1533-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1533-3

Mathematics Subject Classification

Navigation