Skip to main content
Log in

Degenerate behavior in non-hyperbolic semigroup actions on the interval: fast growth of periodic points and universal dynamics

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider semigroup actions on the unit interval generated by strictly increasing \(C^r\)-maps. We assume that one of the generators has a pair of fixed points, one attracting and one repelling, and a heteroclinic orbit that connects the repeller and attractor. We also assume that the other generators form a robust blender, which can bring the points from a small neighborhood of the attractor to an arbitrarily small neighborhood of the repeller. This is a model setting for partially hyperbolic systems with one central direction. We show that, under additional conditions on \(\frac{f''}{f'}\) and the Schwarzian derivative, the above semigroups exhibit, \(C^r\)-generically for any \(r \ge 3\), arbitrarily fast growth of the number of periodic points as a function of the period. We also show that a \(C^r\)-generic semigroup from the class under consideration supports an ultimately complicated behavior called universal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. If \(\tau _S(z_1,f_0)\ne \tau _S(z_2)\), then choose \((i_1,i_2)=(1,2)\). If \(\tau _S(z_1,f_0)= \tau _S(z_2)=+1\) and \(\tau _A(z_4,f_0)=+1\), then choose \((i_1,i_2)=(2,4)\). Other cases are similar.

References

  1. Avila, A., Bochi, J., Yoccoz, J.: Uniformly hyperbolic finite-valued \({\rm SL}(2, \mathbb{R})\)-cocycles. Comment. Math. Helv. 85(4), 813–884 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, M., Mazur, B.: On periodic points. Ann. Math. 81(1), 82–99 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asaoka, A.: Fast growth of the number of periodic points in generic families of two-dimensional real-analytic area-preserving diffeomorphisms. arXiv:1603.0863 (preprint)

  4. Barrientos, P., Raibekas, A.: Dynamics of iterated function systems on the circle close to rotations. Ergodic Theory Dyn. Syst. (2016) (to appear)

  5. Belitskii, G.: Smooth classification of one-dimensional diffeomorphisms with hyperbolic fixed points. Sib. Math. J. 27, 801–804 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, P.: Normal forms and Misiurewicz renormalization for dissipative surface diffeomorphisms. arXiv:1404.2235 (preprint)

  7. Bochi, J., Bonatti, C.: Perturbation of the Lyapunov spectra of periodic orbits. Proc. Lond. Math. Soc. 105(1), 1–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonatti, C., Díaz, L.: On maximal transitive sets of generic diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 96, 171–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonatti, C., Díaz, L.: Persistent nonhyperbolic transitive diffeomorphisms. Ann. Math. (2) 143(2), 357–396 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonatti, C., Díaz, L., Fisher, T.: Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete Contin. Dyn. Syst. 20(3), 589–604 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Bonatti, C., Díaz, L.J., Pujals, E.: A \(C^1\)-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. (2) 158(2), 355–418 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonatti, C., Díaz, L., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. Springer, Berlin (2004)

    MATH  Google Scholar 

  13. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (2008)

  14. Broer, H., Tangerman, F.: From a differentiable to a real analytic perturbation theory, applications to the Kupka–Smale theorem. Ergodic Theory Dyn. Syst. 6, 345–362 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Corwin, L.J., Greenleaf, F.P.: Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, vol. 18. Cambridge University Press, Cambridge, viii+269 pp (1990)

  16. Díaz, L.J., Gelfert, K., Rams, M.: Rich phase transitions in step skew products. Nonlinearity 24(12), 3391–3412 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gonchenko, S.V., Turaev, D.V., Shilnikov, L.P.: On models with a structurally unstable Poincare homoclinic curve. Sov. Math. Dokl. 44, 422–426 (1992)

    MATH  Google Scholar 

  18. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.V.: On models with non-rough Poincare homoclinic curves. Phys. D 62, 1–14 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gonchenko, S.V., Turaev, D., Shilnikov, L.: Homoclinic tangencies of arbitrarily high orders in the Newhouse regions. J. Math. Sci. 105, 1738–1778 (2001)

    Article  Google Scholar 

  20. Gonchenko, S., Shilnikov, L., Turaev, D.: Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps. Nonlinearity 20, 241–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.V.: On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I. Nonlinearity 21, 923–972 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gonchenko, S.V., Sten’kin, O., Turaev, D.: Complexity of homoclinic bifurcations and \(\Omega \)-moduli. Bifurc. Chaos 6, 969–989 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gorodetski, A., Ilyashenko, Y.: Some properties of skew products over the horseshoe and solenoid. Proc. Steklov Inst. Math. 231, 96–118 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Gourmelon, N.: Steps towards a classification of \(C^r\)-generic dynamics close to homoclinic points. arXiv:1410.1758 (2014)

  25. Kaloshin, V.: Generic diffeomorphisms with super-exponential growth of number of periodic orbits. Commun. Math. Phys. 211(1), 253–271 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martens, M., de Melo, W., van Strien, S.: Julia–Fatou–Sullivan theory for real one-dimensional dynamics. Acta Math. 168, 273–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mather, J.: Commutators of diffeomorphisms. Commun. Math. Helv. 48, 195–233 (1973)

    Article  Google Scholar 

  28. Newhouse, S.: The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math. IHES 50, 101–151 (1979)

    Article  MATH  Google Scholar 

  29. Navas, A., Ponce, M.: A Livsic type theorem for germs of analytic diffeomorphisms. Nonlinearity 26, 297–305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Palis, J.: A global view of dynamics and a conjecture on the denseness of finitude of attractors. Asterisque 261, 339–351 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shinohara, K.: On the minimality of semigroup actions on the interval which are \(C^1\)-close to the identity. Proc. Lond. Math. Soc. 109, 1175–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79(4), 809–824 (1957)

    Article  MATH  Google Scholar 

  34. Turaev, D.V.: On dimension of non-local bifurcational problems. Bifurc. Chaos 6, 919–948 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Turaev, D.: Polynomial approximations of symplectic dynamics and richness of chaos in non-hyperbolic area-preserving maps. Nonlinearity 16, 123–135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Turaev, D.: Richness of chaos in the absolute Newhouse domain. In: Proc. ICM 2000 vol. III, pp. 1804–1815. World Scientific, Singapore (2010)

  37. Turaev, D.: Maps close to identity and universal maps in the Newhouse domain. Commun. Math. Phys. 335, 1235–1277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank to Pierre Berger for useful dicsussions. KS and DT are grateful for the hospitality of Department of Mathematics of Kyoto University. This paper is supported by GCOE program of Kyoto University, JSPS KAKENHI Grant-in-Aid for Young Scientists (A) (22684003), Scientific Research (C) (26400085), and JSPS Fellows (26\(\cdot \)1121), by Grant No. 14-41-00044 of RSF (Russia), and by the Royal Society Grant IE141468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Asaoka.

Additional information

Communicated by Nalini Anantharaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaoka, M., Shinohara, K. & Turaev, D. Degenerate behavior in non-hyperbolic semigroup actions on the interval: fast growth of periodic points and universal dynamics. Math. Ann. 368, 1277–1309 (2017). https://doi.org/10.1007/s00208-016-1468-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1468-0

Mathematics Subject Classification

Navigation