Skip to main content
Log in

Existence of weak conical Kähler–Einstein metrics along smooth hypersurfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The existence of weak conical Kähler–Einstein metrics along smooth hypersurfaces with cone angle between \(0\) and \(2\pi \) is obtained by studying a family of Aubin’s (J Funct Anal 57:143–153, 1984) continuity paths and obtaining a uniform \(C^2\) estimate by a local Moser’s iteration technique. As soon as the \(C^0\) estimate is achieved, the local Moser’s iteration technique could improve the rough \(C^2\) estimate in Chen et al. (J Am Math Soc 28:183–197, 2015) to a uniform \(C^2\) estimate. Since in the cases of negative and zero Ricci curvature, the \(C^0\) estimate is unobstructed, the weak conical Kähler–Einstein metrics are obtained; while in the case of positive Ricci curvature, the \(C^0\) estimate is achieved under the assumption of the properness of the Twisted K-Energy. The method used in this paper does not depend on the bound of the holomorphic bisectional curvature of any global background conical Kähler metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The using of Chern–Lu inequality in the Kähler–Einstein context first appeared in the preprint of Jeffres et al. [14] for the conical singular version, we are following Chen et al. [7] for the smooth version.

References

  1. Aubin, T.: Équations du type MongeAmpère sur les varietés kählériennes compactes. Bull. Sci. Math. 102(2), 6395 (1978)

    MathSciNet  Google Scholar 

  2. Aubin, T.: Réduction du cas positif de l’équation de Monge–Ampère sur les variété Kähleriennes compactes à la démonstration d’une inégualité. J. Funct. Anal. 57, 143–153 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brendle, T.: Ricci flat Kähler metrics with Edge Singularities. Int. Math. Res. Not. 24, 5727–5766 (2013)

    MathSciNet  Google Scholar 

  4. Campana, F., Guenancia, H., Păun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Ann. scientifiques de l’ENS 46, fascicule 6, 879–916 (2013)

    Google Scholar 

  5. Chen, X.-X., Donaldson, S., Sun, S.: Kähler–Einstein metrics and stability. Int. Math. Res. Not. 8, 2119–2125 (2014)

    MathSciNet  Google Scholar 

  6. Chen, X.-X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities. J. Am. Math. Soc. 28, 183–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X.-X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds, II: limits with cone angle less than \(2\pi \). J. Am. Math. Soc. 28, 199–234 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, X.-X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds, III: limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Am. Math. Soc. 28, 235–278 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chen, X.-X., Wang, Y.-Q.: C\(^{2,\alpha }\)-estimate for complex Monge-Ampère equations with Hölder continuous right hand side. arXiv:1406.5825

  10. Chern, S-S.: On holomorphic mappings of Hermitian manifolds of the same dimension. In: Proceedings of Symposia in Pure Mathematics, vol. 11, pp. 157–170. American Mathematical Society (1968)

  11. Donaldson, S.K.: Kähler metrics with cone singularities along a divisor. Essays Math. Appl. 49–79 (2012)

  12. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35, 333363 (1982)

    Article  Google Scholar 

  13. Guenancia, H., Păun, M.: Conic singularities metrics with Prescribed Ricci curvature: The case of General cone angles along normal crossing divisors. arXiv:1307.6375

  14. Jeffres, T.D., Mazzeo, R., Rubinstein, Y.: Kähler-Einstein metrics with Edge singularities. arXiv:1105.5216

  15. Kołodziej, S.: Hölder continuity of solutions to the complex Monge–Ampère equation with the right hand side in \(L^p\), the case of compact Kähler manifolds. Math. Ann. 342, 379–386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 46, 487523 (1982)

    MATH  Google Scholar 

  17. Li, C., Sun, S.: Conical Kähler–Einstein metrics revisited. Commun. Math. Phys. 331(3), 927–973 (2014)

    Article  Google Scholar 

  18. Lu, Y.-C.: Holomorphic mapping of complex manifolds. J. Differ. Geom. 2, 299312 (1968)

    Google Scholar 

  19. Luo, F., Tian, G.: Liouville equation and spherical convex polytopes. Proc. Am. Math. Soc. 116, 11191129 (1992)

    Article  MathSciNet  Google Scholar 

  20. Mabuchi, T.: K-energy maps integrating Futaki invariant. Tôhoku Math. J. 38, 575–593 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. McOwen, R.C.: Point singularities and conformal metrics on Riemann surfaces. Proc. Am. Math. Soc. 103, 204–224 (1988)

    Article  MathSciNet  Google Scholar 

  22. Székelyhidi, G.: Greatest lower bound on the Ricci curvature of Fano manifolds. Compos. Math. 147(1), 319–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 137, 1–37 (1997)

    Article  Google Scholar 

  24. Troyanov, M.: Prescribing curvature on compact surfaces with conic singularities. Trans. Am. Math. Soc. 324, 793–821 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, \(I^*\). Commun. Pure Appl. Math. 31, 339–441 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The would like to express great thanks to his advisor, Professor Xiuxiong Chen, who gave him constant encouragement and showed great patience during working on this problem. The gratitude also goes to Dr. Song Sun, Dr. Haozhao Li and Dr. Yuanqi Wang, Yu Zeng and Long Li for helpful discussion and providing useful notes to me at several points. The communication with Dr. Henri Guenancia also helped me clarify several things which were not clear to me before. Finally, the author would also ilke to thank the anonymous referee for suggestions on the reorganization of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjian Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C. Existence of weak conical Kähler–Einstein metrics along smooth hypersurfaces. Math. Ann. 362, 1287–1304 (2015). https://doi.org/10.1007/s00208-014-1140-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1140-5

Mathematics Subject Classification

Navigation